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ABSTRACT
This paper investigates, how the hybrid self-adaptive Cuckoo
Search algorithm (HSA-CS) behaves, when confronted with
constraint engineering design optimization problems. These
problems are commonly found in literature, namely: welded
beam, pressure vessel design, speed reducer, and spring de-
sign. The obtained results are compared to those found in
literature, where the HSA-CS achieved better or comparable
results. Based on results, we can conclude, that the HSA-CS
is suitable for use in real-life engineering applications.
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1. INTRODUCTION
There is a increasing rate in the research community for de-
veloping new constrained optimization algorithms. There-
fore suitable problems must be used, to show the effective-
ness, efficiency and convergence of these new algorithms.
Such problems are usually mathematical problems like the
CEC competition problems, but also engineering design op-
timization problems are adopted in the specialized litera-
ture. Many researchers have studied these problems, by ap-
plying a wide range of different optimization methods such
as Quadratic Programming [5], Simulated Annealing [12],
Genetic Algorithms [9], and Swarm Intelligence [2, 3, 6, 7,
1]. The listed algorithms are among the most used in the
literature. The design optimization problems usually have a
non-linear objective function and constraints, while the de-
sign variables are often a combination of discrete and con-
tinuous. The hardest part of finding the optimal solution for
these problems is directly related to the constraints, which
are imposed on the problem.

Since SI based algorithms are getting a lot of attention in
the past couple of years, our aim was to test the behaviour
of a novel hybrid self-adaptive Cuckoo Search [8] (HSA-CS)
on the design optimization problems. The rest of the paper

is organized as follows. In Section 2 some of related work,
mostly that of SI-based algorithms is presented. Section 3 is
dedicated to Cuckoo Search (CS) and the used self-adaptive
hybrid Cuckoo Search algorithm, where an emphasis is on
describing the main differences from the original CS. Section
4 deals with describing the design optimization problems,
and then in Section 5 the obtained results are presented. In
Section 6 the results obtained by the HSA-CS is compared to
those in the literature, and the paper is concluded in Section
7.

2. RELATED WORK
Since the HSA-CS belongs to the SI-based algorithms, it
would only be reasonable to review the literature from this
point of view. Akay and Karaboga [1] presented an artificial
bee colony (ABC) algorithm, with a very simple constraint
handling method. This method is biased to choose feasi-
ble solutions rather than those, which are infeasible. Gan-
domi et al. [7] use a bat algorithm for solving constraint
optimization problems. Their results indicate that their
method obtained better results, compared to those in lit-
erature. Another ABC algorithm was proposed by Braje-
vic and Tuba [3]. The upgraded ABC algorithm enhances
fine-tuning characteristics of the modification rate parame-
ter and employs modified scout bee phase of the ABC algo-
rithm. Baykasoglu and Ozsoydan [2] presented an adaptive
firefly, enhanced with chaos mechanisms. The adaptivity is
focused on on the search mechanism and adaptive param-
eter settings. They report that some best results found in
literature, were improved with their method. Bulatović [4]
applied the improved cuckoo search (ICS) for solving con-
strained engineering problems, which produces better results
than the original cuckoo search (CS). Their improvements
lie in the dynamic changing of the parameters of probability
and step size. Yang et al. [11] utilized a multi-objective CS
(MOCS) for the beam design problem and disc brake prob-
lems. They conclude that the proposed MOCS is efficient
on problems with complex constraints.

3. CUCKOO SEARCH
Cuckoo search is a stochastic population-based optimization
algorithm proposed by Yang and Deb in 2009 [10]. It belongs
in the SI-based algorithm family, and it is inspired by the
natural behaviour of some cuckoo species in nature. To trap
the behavior of cuckoos in nature and adapt it to be suitable
for using as a computer program the authors [10] idealized
three rules:
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• Each cuckoo lays one egg, and dumps it in a randomly
chosen nest,

• Nests with high-quality egg, will be carried over to the
next generations,

• Any egg laid by a cuckoo, may be discovered by the
host bird with a probability of pa ∈ (0, 1). When an
egg is discovered, the host bird may get rid of it or
simply abandon the nest and build a new one.

Each solution in the population of the cuckoo search algo-
rithm corresponding to a cuckoo nest, represents the posi-
tion of the egg in the search space. This position can be
mathematically defined:

xi = {xi,j}, for i = 1, . . . , Np and j = 1, . . . , D, (1)

where Np represents the population size, and D the dimen-
sion of the problem to be solved.

Generating new solutions in the CS is done by executing a
random walk, with the use of the Levy flight distribution:

xi = xi + αL(s, λ). (2)

The term L(s, λ) determines the characteristic scale, and
α > 0 denotes the scaling factor of the step size s.

3.1 Hybrid self-adaptive Cuckoo Search
According to [8] the CS was modified by adding the following
mechanisms: balancing of the exploration strategies within
the CS, self-adaptation of the parameters, and population
reduction. The used exploration employed by the HSA-CS
are:

• random long distance exploration,

• stochastic short-distance exploration, and

• stochastic moderate-distance exploration.

The listed strategies have an impact on how the trial solution
will be generated. The random long distance exploration is
implemented as the abandon operator. The second strategy
improves the current solution by using a local random walk,
with the help of Levy flights (Eq. 2). The last strategy
is borrowed from the DE algorithm. Additionally the last
strategy adds a crossover operation to the CS algorithm.
These execution of these strategies is controlled by a single
parameter.

As was stated all parameters are fully self-adaptive, except
the starting population size, which must be experimentally
defined. Additionally the strategy balancing probability, the
abandon rate, and the elitist parameter (controls whether a
random of best solution is taken as the basis trial vector cal-
culation) are determined by the user. Lastly the population
reduction is implemented by using a simple linear reduction.

It was proven by the authors of the HSA-CS, that the biggest
impact on the results has the inclusion of multiple strategies,
than followed by self-adaptation. Population reduction did
not have a big impact on the results. For more information
about HSA-CS readers are referred to [8].

4. CONSTRAINED DESIGN OPTIMIZATION
PROBLEMS

The following design optimization problems have been used
in this study: welding beam, pressure vessel design, spring
design, and speed reducer design. The used problems are
thoroughly presented and formally defined in the remainder
of this section.

4.1 Welding beam
The goal of this problem is to design a welded beam subject
to minimum cost, subject to some constraints. The prob-
lem consists of four design variables, with the objective is
to find the minimum fabrication cost, with constraints of
shear stress τ , bending stress σ, buckling load Pc, and end
deflection on the beam δ. The mathematical model can be
formulated as follows:

f(x) = 1.10471x21x2 + 0.04811 ∗ x3x4(14 + x2), (3)

subject to:

g0 : τ − 13600 ≤ 0, g1 : σ − 30000 ≤ 0, g2 : x1 − x4 ≤ 0,

g3 : 0.10471x21+(0.04811x3x4(14+x2))−5 ≤ 0, g4 : 0.125−x1 ≤ 0,

g5 : δ − 0.25 ≤ 0, g6 : 6000− Pc ≤ 0, (4)

where
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The design variables are bounded as: 0.1 ≤ x2, x3 ≤ 10, and
0.1 ≤ x1, x4 ≤ 2.

4.2 Pressure vessel design
The idea of this problem is designing a compressed air stor-
age design, with a working pressure of 1000 psi and and
minimum volume of 750 ft3. The problem is described us-
ing four variables, which represent shell thickness, spherical
head thickness, radius and length of the shell. The objective
of the problem is minimizing the manfuacturing cost of the
pressure vessel, and can be formulated as:

f(x) = 0.6224x1x3x4+1.7781x2x
2
3+3.1661x21x4+19.84x21x3,

(6)
subject to

g0 : −x1 + 0.0193x3 ≤ 0, g1 : −x2 + 0.00954x3 ≤ 0,

g2 : −πx23x4 −
4

3
πx33 + 1296000 ≤ 0, g3 : x4 − 240 ≤ 0.

(7)
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The bounds of the design variables are: 0.0625 ≤ x1, x2 ≤
99 ∗ 0.0625, and 10 ≤ x3, x4 ≤ 200.

4.3 Spring design
The spring design optimization problem deals with an opti-
mal design of a tension spring. The problem consists of three
variables, which are the number of spring coils, winding di-
ameter, and wire diameter. The objective is to minimize the
weight of the spring, subject to minimum deflection, surge
frequency, shear stress, and limits on the outside diameter.
Mathematically it can be formulated as:

f(x) = (x3 + 2) ∗ x21 ∗ x2, (8)

subject to the following constraints:

g0 : 1− x32x3
71785x41

≤ 0, g1 :
4x22 − x2x3

12566(x2x33 − x43)
+

1

5108x23
−1 ≤ 0,

g2 : 1− 140.45x1
x22x3

≤ 0, g3 : (x1 + x2)− 1.5 ≤ 0 (9)

The search space of design variables are limited as: 0.05 ≤
x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, and 2 ≤ x3 ≤ 15.

4.4 Speed reducer
This problem deals with a minimum weight design of a speed
reducer, subject to bending stress of the gear teeth, surface
stress, stresses in the shafts, and transverse deflections of
the shafts. This problem is formulated with seven design
variables, using the following mathematical definition:

f(x) = 0.7854x1x
2
2(3.3333x23 + 14.9334x3 − 43.0934)−

1.508x1(x26 + x27) + 7.477(x36 + x37) + 0.7854(x4x
2
6 + x5x

2
7),
(10)

subject to:
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2
3
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x2x3
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x2x3
40
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5x2
x1
− 1 ≤ 0, g8 :
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12x2

− 1 ≤ 0,

g9 :
1.5x6 + 1.9

x4
− 1 ≤ 0, g10 :

1.1x7 + 1.9

x5
− 1.0 ≤ 0. (11)

The search of the design variables is defined as:
(2.6, 0.7, 17.0, 7.3, 7.8, 2.9, 5.0)T ≤ x ≤ (3.6, 0.8, 28.0, 8.3, 8.3, 3.9, 5.5)T

5. RESULTS
The HCS-SA was applied to solve the design optimization
problems, which were described in the previous section. To
provide for a fair comparison with the literature, the number
of function evaluations was set to 50000, as advised in [2],
where the authors determined, that such a number is an

average value for function evaluations found in literature.
The parameters of HSA-CS were set according to the authors
in [8], while the population size was varied as: Np = 30 for
welded beam, spring design, and speed reducer, while for
pressure vessel Np = 50. Each experiment was replicated
50 times, thus the results reported here are the average of
those runs.

Table 1 holds the results of the experiments. For each prob-
lem the minimum (min), maximum (max), mean, median
(md), and standard deviation (std) values are reported.

The results in Table 1 indicate that the HSA-CS was able
to find the same solution for the welded beam and speed
reducer problems in all 50 runs of the algorithm. On the
contrary, the HSA-CS had trouble in converging towards a
single solution.

6. DISCUSSION
In this section we analyze the results from our experiments
and compare them to those found in the literature. For this
purpose a Table 2 is provided, where results from literature
are gathered. It can be seen, that the HSA-CS achieved com-
petitive results if not better results on all test optimization
problems. For the welded beam problem our method and
the method in [2] converged to a single solution, whereas
other methods were not as successful. It is also hard to
say, which method performed the best, since the findings
in other papers are reported only to 6 digits. On the pres-
sure vessel problem, the HSA-CS achieved similar results as
for the welded beam problem. Based on the mean value
the only competitive method was again the one proposed
in [2]. HSA-CS acheived the best results for the speed re-
ducer. Again, like for the welded beam, the results were
unanimous, converging to a single solution, which was also
the smallest based on mean value. Good results were also
obtained on the spring design problem, were the HSA-CS
had the smallest std value over the 50 runs, while obtain-
ing good results based on the mean value. We can conclude
the HSA-CS would be suitable for use in real-life constraint
optimization problems.

7. CONCLUSION
This paper investigated the recently proposed HSA-CS al-
gorithm, on four well known engineering design optimiza-
tion problems with constraints. The problems at hand were:
welded beam, pressure vessel design, speed reducer design,
and spring design. The obtained results were compared to
the some state-of-the-art methods, were the HSA-CS per-
formed very well, thus we can conclude it would be suitable
for use in real-life engineering applications.

8. REFERENCES
[1] Bahriye Akay and Dervis Karaboga. Artificial bee

colony algorithm for large-scale problems and
engineering design optimization. Journal of Intelligent
Manufacturing, 23(4):1001–1014, 2012.
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