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Abstract. Swarm-intelligence-based and bio-inspired algorithms form a hot topic in the developments of
new algorithms inspired by nature. These nature-inspired metaheuristic algorithms can be based on swarm
intelligence, biological systems, physical and chemical systems. Therefore, these algorithms can be called
swarm-intelligence-based, bio-inspired, physics- and chemistry-based, depending on the sources of inspiration.
Though not all of them are efficient, a few algorithms have proved to be very efficient and thus have become
popular tools for solving real-world problems. Some of the algorithms have been insufficiently studied. The
purpose of this review is to present a relatively comprehensive list of all the algorithms in the literature, so as
to inspire further research.

Keywords: swarm intelligence, bio-inspired algorithms, physics/chemistry algorithms, optimization

Kratki pregled algoritmov po vzoru iz narave za
optimizacijo

Inteligenca rojev (angl. Swarm Intelligence, krajše SI) in algo-
ritmi po vzoru iz biologije ponujajo nove smernice v razvoju
novih algoritmov po vzoru iz narave. Ti metahevristični algo-
ritmi lahko bazirajo na inteligenci rojev, bioloških sistemih
ter fizikalnih in kemijskih sistemih. Glede na njihov vzor,
ki ga posnemajo, te delimo na algoritme z inteligenco rojev,
algoritme na osnovi bioloških sistemov, in algoritme na osnovi
fizikalnih oz. kemijskih sistemov. Čeprav vsi algoritmi te vrste
niso učinkoviti, pa nekateri izmed njih kažejo ravno obratno in
zato je z njimi moč reševati realne probleme. Nekateri izmed
njih nimajo teoretične podlage. V članku želimo predstaviti
širok seznam vseh današnjih algoritmov po vzoru iz narave,
da bi vspodbudili njihov nadaljni razvoj.

1 INTRODUCTION

Real-world optimization problems are often very chal-
lenging to solve, and many applications have to deal
with the NP-hard problems. To solve such problems,
optimization tools have to be used, though there is no
guarantee that the optimal solution can be obtained.
In fact, for the NP-problems, there are no efficient
algorithms at all. As a result, many problems have to
be solved by trial and errors using various optimization
techniques. In addition, new algorithms have been de-
veloped to see if they can cope with these challenging
optimization problems.

Received 11 June 2013
Accepted 15 July 2013

Among these new algorithms, many algorithms such
as particle swarm optimization, cuckoo search and firefly
algorithm, have gained popularity due to their high
efficiency. In the current literature, there are about 40
different algorithms. It is really a challenging task to
classify these algorithms systematically. Obviously, the
classifications can largely depend on the criteria, and
there is no easy guideline to set out the criteria in the
literature. As criteria may vary, detailed classifications
can be an impossible task for a research paper. However,
in this short paper, we only attempt to focus on one
aspect of the characteristics of these algorithms. That
is, we will focus on the source of inspiration when
developing algorithms.

Therefore, the rest of this paper is organized as
follows: Section 2 analyzes the sources of inspiration,
Section 3 provides a brief and yet comprehensive list
of algorithms and, Section 4 concludes the paper with
some suggestions.

2 SOURCES OF INSPIRATION

Nature has inspired many researchers in many ways and
thus is a rich source of inspiration. Nowadays, most new
algorithms are nature-inspired, because they have been
developed by drawing inspiration from nature. Even with
the emphasis on the source of inspiration, we can still
have different levels of classifications, depending on how
details and how many subsources we will wish to use.
For the sake of simplicity, we will use the highest level
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sources such as biology, physics or chemistry.
In the most generic term, the main source of in-

spiration is nature. Therefore, almost all the new al-
gorithms can be referred to as nature-inspired. By far
the majority of the nature-inspired algorithms are based
on some successful characteristics of the biological
system. Therefore, the largest fraction of the nature-
inspired algorithms are biology-inspired, or bio-inspired
for short.

Among the bio-inspired algorithms, a special class of
algorithms have been developed by drawing inspiration
from swarm intelligence. Therefore, some of the bio-
inspired algorithms can be called swarm-intelligence-
based. In fact, algorithms based on swarm intelligence
are among the most popular. Good examples are ant
colony optimization [1], particle swarm optimization
[2], cuckoo search [3], bat algorithm [4], and firefly
algorithm [5], [6].

Obviously, not all the algorithms have been based on
biological systems. Many algorithms have been devel-
oped by using inspiration from physical and chemical
systems. Some may even be based on music [7]. In
the rest of the paper, we will briefly divide all the
algorithms into different categories without claiming this
categorization to be unique. This is a good attempt to
provide sufficiently detailed references.

3 CLASSIFICATION OF ALGORITHMS

Based on the above discussions, we can divide all the
existing algorithms into four major categories: swarm-
intelligence (SI)-based, bio-inspired (but not SI-based),
physics/chemistry-based, and others. We will summarize
them briefly in the rest of this paper. However, we will
focus here on the relatively new algorithms. The Well-
established algorithms such as genetic algorithms are so
well known that there is no need to introduce them in
this brief paper.

It is worth pointing out the classifications given
here are not unique as some of the algorithms can
be classified into several categories at the same time.
Loosely speaking, classifications depend largely on what
the focus or emphasis and the perspective may be. For
example, if the focus and perspective are about the
trajectory of the search path, the algorithms can be
classified as trajectory- and population-based. Simulated
annealing is a good example of the trajectory-based
algorithms, while particle swarm optimization and firefly
algorithms are the population-based algorithms. If our
emphasis is placed on the interaction of the multiple
agents, the algorithms can be classified as attraction-
based or non-attraction-based. The Firefly algorithm
(FA) is a good example of the attraction-based algo-
rithms because FA uses the attraction of light and at-
tractiveness of fireflies, while the genetic algorithms are
non-attraction-based since there is no explicit attraction

used. On the other hand, if the emphasis is placed on the
updating equations, the algorithms can be divided into
rule- and equation-based. For example, particle swarm
optimization and cuckoo search are the equation-based
algorithms for using explicit updating equations, while
the genetic algorithms do not have explicit equations
for crossover and mutation. However, in this case, the
classifications are not unique. For example, FA uses
three explicit rules that can be converted explicitly
into a single updating equation which is nonlinear [5],
[6]. This clearly shows that classifications depend on
the actual perspective and motivations. Therefore, the
classifications here are just one possible attempt, though
the emphasis is placed on the sources of inspiration.

3.1 Swarm-intelligence-based algorithms
Swarm intelligence (SI) concerns the collective,

emerging behaviour of multiple, interacting agents who
follow some simple rules. While each agent may be
considered as unintelligent, the whole system of the
multiple agents may show some self-organization be-
haviour and thus can behave like some sort of collective
intelligence. Many algorithms have been developed by
drawing inspiration from the swarm-intelligence systems
in nature.

All the SI-based algorithms use multi-agents inspired
by the collective behaviour of social insects, like ants,
termites, bees, and wasps, as well of other animal
societies like flocks of birds or fish. A list of the SI
algorithms is presented in Table 1. The classical particle
swarm optimization (PSO) uses the swarming behaviour
of fish and birds, while the firefly algorithm (FA) uses
the flashing behaviour of swarming fireflies. Cuckoo
search (CS) is based on the brooding parasitism of
some cuckoo species, while the bat algorithm uses the
echolocation of foraging bats. Ant-colony optimization
uses the interaction of social insects (e.g., ants), while
the class of the bee algorithms is all based on the
foraging behaviour of the honey bees.

The SI-based algorithms are among the most popular
and widely used. There are many reasons for such
popularity. One of them is that the SI-based algorithms
usually share information among the multiple agents, so
that self-organization, co-evolution and learning during
iterations may help to provide the high efficiency of
most SI-based algorithms. Another reason is that the
multiple agent can be parallelized easily so that large-
scale optimization becomes more practical from the
implementation point of view.

3.2 Bio-inspired, but not SI-based algorithms
Obviously, the SI-based algorithms belong to a wider

class of the algorithms, called the bio-inspired algo-
rithms. In fact, the bio-inspired algorithms form a ma-
jority of all the nature-inspired algorithms. From the
set theory point of view, the SI-based algorithms are
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a subset the of bio-inspired algorithms, while the bio-
inspired algorithms are a subset of the nature-inspired
algorithms. That is

SI-based ⊂ bio-inspired ⊂ nature-inspired.

Conversely, not all the nature-inspired algorithms
are bio-inspired, and some are purely physics- and
chemistry- based algorithms as we will see below.

Many bio-inspired algorithms do not use directly
the swarming behaviour. Therefore, it is better to call
them bio-inspired, but not SI-based. For example, the
genetic algorithms are bio-inspired, but not SI-based.
However, it is not easy to classify certain algorithms
such as differential evolution (DE). Strictly speaking,
DE is not bio-inspired because there is no direct link
to any biological behaviour. However, as it has some
similarity with the genetic algorithms and also has a key
word ‘evolution’, we tentatively put it in the category of
bio-inspired algorithms. These algorithms are listed in
Table 1.

For example, the flower algorithm [8], or flower
pollination algorithm [9], developed by Xin-She Yang
in 2012, is a bio-inspired algorithm, but it is not an
SI-based algorithm because the flower algorithm tries
to mimic the pollination characteristics of flowering
plants and the associated flower consistency of some
pollinating insects.

3.3 Physics- and Chemistry-Based algorithms
Not all the metaheuristic algorithms are bio-inspired,

because their sources of inspiration often come from
physics and chemistry. For the algorithms that are not
bio-inspired, most have been developed by mimicking
certain physical and/or chemical laws, including elec-
trical charges, gravity, river systems, etc. As different
natural systems are relevant to this category, we could
even subdivide them into many subcategories which is
not necessary. A list of these algorithms is given in
Table 1.

Schematically, we can present the relationship be-
tween the physics- and chemistry based algorithms as
follows:

Physics algorithms
Chemistry algorithms

 /∈ bio-inspired algorithms

∈ nature-inspired algorithms

Though physics and chemistry are two different subjects,
however, it is not useful to subdivide this subcategory
further into the physics- and chemistry-based algorithms.
After all, many fundamental laws are the same. So we
simply group them as the physics- and chemistry-based
algorithms.

3.4 Other algorithms
When researchers develop new algorithms, some

may look for inspiration away from nature. Conse-
quently, as some algorithms are not bio-inspired or

physic/chemistry-based, it is sometimes difficult to put
some algorithms in the above three categories, because
these algorithms have been developed by using various
characteristics from different sources, such as social,
emotional, etc. In this case, it is better to put them in
some other category, as listed in Table 1.

3.5 Some Remarks
Though the sources of inspiration are very diverse,

the algorithm designed from such inspiration may be
equally diverse. However, care should be taken, as a true
novelty is a rare thing. For example, though there are
about 28,000 living species of fish, this cannot mean that
researchers should develop 28,000 different fish-based
algorithms. Therefore, they cannot call their algorithms
trout algorithm, squid algorithm, ..., shark algorithm.

As a matter of fact, researchers try to look for some
efficient formulas as summarized by Yang [10] in the
following generic scheme:

[x1, x2, ..., xn]
t+1 = A

{
[x1, x2, ..., xn]

t; ...;

(p1, p2, ..., pk); (w1, w2, ..., wm)
}
,

which attempts to generate better solutions (a population
of n solutions) at iteration t+1 from the current iteration
t and its solution set xi, (i = 1, 2, ..., n). This iterative
algorithmic engine (i.e. algorithm A) also uses some
algorithm-dependent parameters (p1, ..., pk) and some
random variables (w1, ..., wm). This schematic represen-
tation can include all the algorithms listed in this paper.
However, this does not mean it is easy to analyze the
behaviour of an algorithm because this formula can be
highly nonlinear. Though the Markov chains theory and
dynamic-system theory can help providing some limited
insight into some algorithms, a detailed mathematical
framework is still yet to be developed.

On the other hand, it is worth pointing out that studies
show that some algorithms are better than others. It is
still not quite understood why. However, if one looks at
the intrinsic part of the algorithm design closely, some
algorithms are badly designed; they lack certain basic
capabilities such as mixing and diversity among the
solutions. In contrast, good algorithms have both mixing
and diversity control so that the algorithms can explore
the vast search space efficiently, while they converge rel-
atively quickly when necessary. Good algorithms, such
as particle swarm optimization, differential evolution,
cuckoo search and FAs all have both global search and
intensive local search capabilities, which may be partly
why they are so efficient.
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4 CONCLUSION

The sources of inspiration for algorithm development
are very diverse, and consequently the algorithms are
equally diverse. In this paper, we briefly summarized
all the algorithms into four categories. This can be a
comprehensive source of information to form a basis or
point of reference for further research. It is worth noting
that the algorithm classifications may not be unique, and
the presented table should be used for the purpose of
information only.

Based on many studies in the literature, some algo-
rithms are more efficient and popular than others. It
would be helpful to carry out more studies, but this
does not mean that we should encourage researchers to
develop more algorithms such as grass, sky, or ocean
algorithms.

Currently, there may be some confusion and distrac-
tion in the research of metaheuristic algorithms. On one
hand, researchers have focused on important novel ideas
for solving difficult problems. On the other hand, some
researchers, have artificially invented new algorithms for
the sake of publications with little improvement and no
novelty. Researchers should be encouraged to carry out
truly novel and important studies that would really be
useful in solving hard problems. Therefore, our aim is
to inspire more research to gain a better insight into
the efficient algorithms to be used in solving large-scale
real-world problems.
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Cisneros, and Humberto Sossa. Circle detection using electro-
magnetism optimization. Information Sciences, 182(1):40–55,
2012.

[63] TO Ting, Ka Lok Man, Sheng-Uei Guan, Mohamed Nayel, and
Kaiyu Wan. Weightless swarm algorithm (wsa) for dynamic
optimization problems. In Network and Parallel Computing,
pages 508–515. Springer, 2012.

[64] Hamed Shah-Hosseini. Principal components analysis by the
galaxy-based search algorithm: a novel metaheuristic for con-
tinuous optimisation. International Journal of Computational
Science and Engineering, 6(1):132–140, 2011.

[65] Esmat Rashedi, Hossein Nezamabadi-Pour, and Saeid Saryazdi.
Gsa: a gravitational search algorithm. Information sciences,
179(13):2232–2248, 2009.

[66] H Shayeghi and J Dadashpour. Anarchic society optimization
based pid control of an automatic voltage regulator (avr) system.
Electrical and Electronic Engineering, 2(4):199–207, 2012.

[67] P. Civicioglu. Artificial cooperative search algorithm for numer-
ical optimization problems. Information Sciences, 229:58–76,
2013.

[68] Hamed Shah-Hosseini. Problem solving by intelligent water
drops. In Evolutionary Computation, 2007. CEC 2007. IEEE
Congress on, pages 3226–3231. IEEE, 2007.

[69] Pinar Civicioglu. Backtracking search optimization algorithm
for numerical optimization problems. Applied Mathematics and
Computation, 219(15):8121–8144, 2013.



122 FISTER, YANG FISTER, BREST, FISTER

[70] Pablo Rabanal, Ismael Rodrı́guez, and Fernando Rubio. Using
river formation dynamics to design heuristic algorithms. In
Unconventional Computation, pages 163–177. Springer, 2007.

[71] Pinar Civicioglu. Transforming geocentric cartesian coordinates
to geodetic coordinates by using differential search algorithm.
Computers & Geosciences, 46:229–247, 2012.

[72] Tamás Vicsek, András Czirók, Eshel Ben-Jacob, Inon Cohen,
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