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Abstract. Swarm intelligence is a very powerful technique appropriate to optimization. In this paper, we present
a new swarm intelligence algorithm, which is based on the bat algorithm. Bat algorithm has been hybridized
with differential evolution strategies. This hybridization showed very promising results on standard benchmark
functions and also significantly improved the original bat algorithm.
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Hibridni algoritem na osnovi obnašanja netopirjev

Inteligenca rojev, (angl. Swarm Intelligence) postaja zelo
pomembna optimizacijska tehnika. V članku predstavljamo
nov algoritem inteligence rojev, ki temelji na osnovi obnašanja
netopirjev, (angl. Bat Algorithm) in je hibridiziran s strategi-
jami diferencialne evolucije. Poleg zelo obetavnih rezultatov
na testnih primerih, (angl. Benchmark Functions), hibridizacija
prav tako občutno izboljša originalni netopirski algoritem.

1 INTRODUCTION

Nature has always been an inspiration for researchers.
In the past, many new nature-inspired algorithms have
been developed to solve hard problems in optimization.
In general, there are two main concepts developed in
bio-inspired computation:

1) evolutionary algorithms,
2) swarm intelligence algorithms.

Evolutionary algorithms are optimization tech-
niques [7] that base on Darwin’s principle of survivor of
the fittest [5]. It states that in nature, the fittest individ-
uals have the greater chances to survive. Evolutionary
algorithms consist of the following disciplines: genetic
algorithms, evolution strategies, genetic programming,
evolutionary programming, differential evolution.

Although all these algorithms or methods were de-
veloped independently, they share similar characteristics
(like variation operators, selection operators), when solv-
ing problems. In fact, the evolutionary algorithms are
distinguished by their representation of solutions. For
example, genetic algorithms [15], [16] support the binary
representation of solution, evolution strategies [2], [11]
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and differential evolution [29], [3], [6] work on real-
valued solutions, genetic programming [21] acts on pro-
grams in Lisp, while the evolutionary programming [13]
behaves with finish state automata. Evolutionary algo-
rithms have been applied to a wide range of areas
of optimization, modeling, and simulation. Essentially,
differential evolution has sucessfully been employed
in the following areas of optimization: function opti-
mization [28], large-scale global optimization [4], graph
coloring [8], chemical process optimization [1].

Swarm intelligence is the collective behaviour of
decentralized, self-organized systems, either natural or
artificial. Swarm intelligence was introduced by Beny
in 1989. A lot of algorithms were proposed since then.
Swarm intelligence algorithms were applied on continu-
ous as well as combinatorial optimization problems [25].
The most well-known classes of swarm intelligence
algorithms are as follows: particle swarm optimization,
ant colony optimization, artificial bee colony, firefly
algorithm, cuckoo search and bat algorithm.

Particle swarm optimization has been successfully
applied in problems of antenna design [17] and electro-
magnetics [27]. Ant colony algorithms were also used
in many areas of optimization [20] [26] [22].Artificial
bee colony showed good performance in numerical
optimization [18] [19], in large-scale global optimiza-
tion [10], and also in combinatorial optimization [24]
[9] [30].

Cuckoo search algorithm is a very strong method
for function optimization and also for engineering op-
timization problems[34] [33]. Firefly algorithm showed
promising results in function optimization and it showed
good results also in combinatorial optimization [12].

Echolocation is an important feature of bat behaviour.
That means, bats emit a sound pulse and listen to
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the echo bouncing back from obstacles whilst flying.
This phenomenon has been inspired Yang [36] to de-
velop the Bat Algorithm (BA). The algorithm obtained
good results where dealing with lower-dimensional op-
timization problems, but may become problematic for
higher-dimensional problems because it tends to con-
verge very fast initially. On the other hand, differential
evolution [23] is a typical evolutionary algorithm with
differential mutation, crossover and selection that was
successfully applied to continuous function optimiza-
tion.

In order to improve bat algorithm behaviour for
higher-dimensional problems, the original bat algorithm
were hybridized with differential-evolution strategies, in
this paper. This Hybrid Bat Algorithm (HBA) has been
tested on a standard set of benchmark functions taken
from literature. Our results of numerical experimental
show that the proposed HBA can significantly improve
the performance of the original bat algorithm, which can
be very useful for the future.

The structure of the paper is as follows. In Section
2, the original bat algorithm together with differential
evolution algorithm are introduced. In line with this,
some biological foundations of bat behaviour are ex-
plained. Section 3 describes our proposed novel ap-
proach of hybridizing the bat algorithm with differential
evolution strategies. Section 4 illustrates experiments
and discusses the results. At the end of the paper, we
conclude with future directions and developments with
HBA.

2 BAT ALGORITHM

Bat algorithm has been developed by Xin-She Yang
in 2010 [35]. The algorithm exploits the so called
echolocation of bats. Bats use sonar echoes to detect
and avoid obstacles. It is generally known, that sound
pulses are transformed to frequency which reflects from
obstacle. Bats can use time delay from emission to
reflection and use it for navigation. They typically emit
short loud, sound impulses. The pulse rate is usually
defined as 10 to 20 times per second. After hitting
and reflecting, bats transform their own pulse to useful
information to gauge how far away the prey is. Bats are
using wavelengths, that vary from range [0.7,17] mm or
inbound frequencies [20,500] kHz. By implementation,
pulse frequency and rate has to be defined. Pulse rate
can be simply determined from range 0 to 1, where 0
means there is no emission and by 1, bats are emitting
maximum [14], [31], [37].

This behaviour can be used to formulate the new bat
algorithm. Yang [35] used three generalized rules for bat
algorithms:

1) All bats use echolocation to sense distance, and
they also guess the difference between food/prey
and background barriers in a some magical way.

2) Bats fly randomly with velocity vi at position xi
with a fixed frequency fmin, varying wavelength
λ and loudness A0 to search for prey. They can
automatically adjust the wavelength (or frequency)
of their emitted pulses and adjust the rate of pulse
emission r ∈ [0, 1], depending on the proximity
of their target.

3) Although the loudness can vary in many ways,
we assume that the loudness varies from a large
(positive) A0 to a minimum constant value Amin.

Algorithm 1 Original Bat Algorithm
1: Objective function f(x), x = (x1, ..., xd)

T

2: Initialize the bat population xi and vi for i = 1 . . . n
3: Define pulse frequency Qi ∈ [Qmin, Qmax]
4: Initialize pulse rates ri and the loudness Ai
5: while (t < Tmax) // number of iterations
6: Generate new solutions by adjusting frequency, and
7: updating velocities and locations/solutions [Eq.(2) to (4)]
8: if(rand(0, 1) > ri )
9: Select a solution among the best solutions

10: Generate a local solution around the best solution
11: end if
12: Generate a new solution by flying randomly
13: if(rand(0, 1) < Ai and f(xi) < f(x))
14: Accept the new solutions
15: Increase ri and reduce Ai
16: end if
17: Rank the bats and find the current best
18: end while
19: Postprocess results and visualization

The original bat algorithm is illustrated in Algo-
rithm 1. In this algorithm bat behaviour is captured into
fitness function of problem to be solved. It consists of
the following components:

• initialization (lines 2-4),
• generation of new solutions (lines 6-7),
• local search (lines 8-11),
• generation of a new solution by flying randomly

(lines 12-16),
• find the current best solution.
Initialization of the bat population is performed ran-

domly. Generating the new solutions is performed by
moving virtual bats according the following equations:

Q
(t)
i = Qmin + (Qmax −Qmin)U(0, 1),

v
(t+1)
i = vt

i + (xt
i − best)Q

(t)
i ,

x
(t+1)
i = x

(t)
i + v

(t)
i ,

(1)

where U(0, 1) is a uniform distribution. A random walk
with direct exploitation is used for local search that
modifies the current best solution according to equation:

x(t) = best+ εA
(t)
i (2U(0, 1)− 1), (2)

where ε is the scaling factor, and A(t)
i the loudness. The

local search is launched with the proximity depending
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on the pulse rate ri. The term in line 13 is similar to the
simulated annealing behavior, where the new solution is
accepted with some proximity depending on parameter
Ai. In line with this, the rate of pulse emission ri
increases and the loudness Ai decreases. Both charac-
teristics imitate natural bats, where the rate of pulse
emission increases and the loudness decreases when a
bat finds a prey. Mathematically, these characteristics are
captured with following equations:

A
(t+1)
i = αA

(t)
i , r

(t)
i = r

(0)
i [1− exp(−γε)], (3)

where α and γ are constants. Actually, the α parameter
plays a similar role as the cooling factor in simulated
annealing algorithm that controls the convergence rate
of this algorithm.

3 DIFFERENTIAL EVOLUTION

Differential evolution(DE)[29][6] is a technique for op-
timization which was introduced by Storn and Price in
1995. DE optimizes a problem by maintaining a popu-
lation of candidate solutions and creating new candidate
solutions by combining existing ones according to its
simple formulae, and then keeping whichever candidate
solution has the best score or fitness on the optimization
problem at hand.

DE supports a differential mutation, a differential
crossover and a differential selection. In particular, the
differential mutation randomly selects two solutions and
adds a scaled difference between these to the third
solution. This mutation can be expressed as follows:

u
(t)
i = w

(t)
r0 +F · (w(t)

r1 −w
(t)
r2 ), for i = 1 . . . NP, (4)

where F ∈ [0.1, 1.0] denotes the scaling factor as a
positive real number that scales the rate of modification
while r0, r1, r2 are randomly selected vectors in the
interval 1 . . . NP .

Uniform crossover is employed as a differential
crossover by the DE. The trial vector is built out
of parameter values that have been copied from two
different solutions. Mathematically, this crossover can
be expressed as follows:

zi,j =

{
u
(t)
i,j randj(0, 1) ≤ CR ∨ j = jrand,

w
(t)
i,j otherwise,

(5)

where CR ∈ [0.0, 1.0] controls the fraction of parame-
ters that are copied to the trial solution. Note, the relation
j = jrand assures that the trial vector is different from
the original solution Y (t).

Mathematically, differential selection can be ex-
pressed as follows:

w
(t+1)
i =

{
z
(t)
i if f(Z(t)) ≤ f(Y (t)

i ),

w
(t)
i otherwise .

(6)

In technical sense, crossover and mutation can be
performed on many ways in differential evolution.
Therefore, a specific notation was used to describe a
variety of these methods (also strategies) in general. For
example, ”DE/rand/1/bin” denotes that the base vector is
randomly selected, 1 vector difference is added to it, and
the number of modified parameters in mutation vector
follows binomial distribution.

4 HYBRID BAT ALGORITHM

As we mentioned before, a new bat algorithm, called
Hybrid Bat Algorithm (HBA) is proposed in this paper.
That is, the original bat algorithm was hybridized using
the differential evolution strategies. The pseudo-code of
the HBA is illustrated in Algorithm 2.

Algorithm 2 Hybrid Bat Algorithm
1: Objective function f(x), x = (x1, ..., xd)

T

2: Initialize the bat population xi and vi for i = 1 . . . n
3: Define pulse frequency Qi ∈ [Qmin, Qmax]
4: Initialize pulse rates ri and the loudness Ai
5: while (t < Tmax) // number of iterations
6: Generate new solutions by adjusting frequency, and
7: updating velocities and locations/solutions [Eq.(2) to (4)]
8: if(rand(0, 1) > ri )
9: Modify the solution using ”DE/rand/1/bin”

10: end if
11: Generate a new solution by flying randomly
12: if(rand(0, 1) < Ai and f(xi) < f(x))
13: Accept the new solutions
14: Increase ri and reduce Ai
15: end if
16: Rank the bats and find the current best
17: end while
18: Postprocess results and visualization

As a result, HBA differs from the original BA in lines
9, where solution is modified using ”DE/rand/1/bin”
strategy.

5 EXPERIMENTS AND RESULTS

A goal of experiments was to show that HBA sig-
nificantly improves the results of the original BA. In
line with this, two bat algorithms were implemented
according to specifications in Algorithms 1 and 2 so
that a well-selected set of test functions in the literature
are used for optimization benchmarks.

Parameters of both bat algorithms were the same.
Dimension of the problem has a crucial impact on
the results of optimization. In order to test how the
dimension influences on the results, three different sets
of dimensions were taken into account, i.e., D = 10,
D = 20, and D = 30. The functions with dimension
D = 10 were limited to 1,000 maximal number of
generations, the functions with dimension D = 20 twice
as much, while the functions with dimension D = 30 to
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3,000. The initial loudness was set to A0 = 0.5 same as
the initial pulse rate (r0 = 0.5). The frequency was taken
from interval Qi ∈ [0.0, 2.0]. Algorithms optimized each
function 25 times and results were measured according
to the best, worst, mean, and medium values in these
runs. In addition, the standard deviation of mean values
were calculated as well.

5.1 Test suite
Test suite consists of five standard function taken

from the literature [32]. Functions in this test suite are
represented in the rest of paper.

5.1.1 Griewangk’s function: The aim of the func-
tion is overcoming failures, that are optimizing each
variable independently. This function is multimodal,
since the number of local optima increases with the
dimensionality. After sufficiently high dimensionalities
(n > 30), multimodality seems to disappear and the
problem seems unimodal.

f1(~x) = −
D∏
i=1

cos

(
xi√
i

)
+

D∑
i=1

x2i
4000

+ 1, (7)

where −600 ≤ xi ≤ 600. The function has the global
minimum at 0.

5.1.2 Rosenbrock’s function: The Rosenbrock func-
tion, similarly to Rastrigin’s has its value 0 at global
minimum. The global optimum is located inside a
parabolic, narrow shaped flat valley. Variables are
strongly dependent from each other, since it is difficult
to converge the global optimum.

f2(~xi) =

D−1∑
i=1

100 (xi+1 − x2i )2 + (xi − 1)2, (8)

where −15.00 ≤ xi ≤ 15.00.
5.1.3 Sphere function:

f3(~xi) =

D∑
i=1

x2i , (9)

where −15.00 ≤ xi ≤ 15.00.
5.1.4 Rastrigin’s function: Based of the Sphere func-

tion, Rastrigin function adds cosine modulation to create
many local minima. Because of this feature, the function
is multimodal. Its global minimum is at the value 0.

f4(~xi) = n ∗ 10 +
n∑

i=1

(x2i − 10 cos(2πxi)), (10)

where −15.00 ≤ xi ≤ 15.00.
5.1.5 Ackley’s function: The complexity of this func-

tion is moderated, since there is exponential term that
covers its surface with numerous local minima. It is
based on the gradient slope. Only the algorithm that uses
the gradient steepest descent will be trapped in a local
optima. Search strategy, analyzing wider area, will be

able to cross the valley among the optima and achieve
better results.

f5(x) =

n−1∑
i=1

[20+e− 20e
−0.2

√
0.5(x2i+1+x

2
i )−

e0.5(cos(2πxi+1)+cos(2πxi))],

(11)

where −32.00 ≤ xi ≤ 32.00. The global minimum of
this function is at 0.

5.2 PC configuration
Configuration of PC, on which experiments have been

executed was as follows:
• HP Pavilion g4,
• processor Intel(R) Core(TM) i5 @ 2.40 GHz,
• memory 8 GB,
• implemented in C++.

5.3 The results
The results of our extensive numerical experiments

can be summarized in Table 1. The table represents re-
sults of BA and HBA algorithms (column 1) solving the
test suite of five functions (denoted as f1, f2, f3, f4, f5)
with dimensions D = 10, 20 and 30, respectively,
according to best, worst, mean, median, and standard
deviation values.

The results of HBA show that this algorithm signif-
icantly improved the results of original BA according
to almost all measures except the standard deviation in
some cases (e.g., by Ackley function). The statistical
analysis of the results has not been performed because
these are evident better by HBA than by BA.

In order to observe how the results of both algorithms
(i.e., BA and HBA) modified with the dimensions of
the functions, a mean value of functions f1 and f3 with
dimensions D = 10, D = 20, and D = 30 are presented
in Figs. 1-3. The logarithmic scale is used to display
the mean value on y-axis. Higher the mean value, more
difficult the function is to solve.
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Figure 1. Mean value of function f1 with various dimensions.

From Fig. 1 it can be seen that the best results
are obtained by optimizing the function f1 with the
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Table 1. The results of experiments
Alg. D Value f1 f2 f3 f4 f5

BA

10

Best 3.29E+01 1.07E+04 5.33E+01 6.07E+01 1.37E+01
Worst 1.73E+02 1.58E+06 3.11E+02 5.57E+02 2.00E+01
Mean 8.30E+01 5.53E+05 1.44E+02 2.27E+02 1.75E+01
Median 3.91E+01 4.69E+05 6.44E+01 1.06E+02 1.68E+00
StDev 6.94E+01 4.71E+05 1.48E+02 2.17E+02 1.73E+01

20

Best 8.77E+01 3.41E+02 2.24E+02 7.28E+01 2.15E+02
Worst 1.43E+02 1.02E+03 5.72E+02 2.02E+02 5.87E+02
Mean 1.46E+00 6.87E+02 3.56E+02 1.82E+02 3.38E+02
Median 1.90E+05 3.16E+06 1.08E+06 9.20E+05 7.50E+05
StDev 1.64E+01 2.00E+01 1.85E+01 1.21E+00 1.80E+01

30

Best 1.58E+02 4.95E+02 3.29E+02 8.74E+01 3.39E+02
Worst 4.18E+02 1.67E+03 7.80E+02 2.64E+02 7.82E+02
Mean 1.51E+02 1.01E+03 5.17E+02 2.12E+02 4.67E+02
Median 4.66E+05 6.23E+06 2.10E+06 1.26E+06 2.06E+06
StDev 1.52E+01 2.00E+01 1.79E+01 1.25E+00 1.76E+01

HBA

10

Best 2.25E-09 6.34E-02 4.83E-09 5.12E+00 6.31E-04
Worst 3.97E-05 5.10E+02 2.89E-03 2.38E+01 2.00E+01
Mean 3.18E-06 6.22E+01 1.26E-04 1.55E+01 1.16E+01
Median 8.66E-06 1.15E+02 5.66E-04 4.46E+00 9.26E+00
StDev 1.14E-07 7.73E+00 1.66E-07 1.69E+01 1.78E+01

20

Best 1.01E-07 9.73E-03 4.83E-04 1.89E-03 3.70E-05
Worst 2.96E+01 9.24E+01 5.47E+01 1.77E+01 5.48E+01
Mean 8.56E-07 1.10E-01 5.87E-03 2.18E-02 3.82E-05
Median 3.60E+01 1.44E+03 2.53E+02 3.10E+02 1.41E+02
StDev 2.17E+00 2.00E+01 1.60E+01 6.18E+00 1.95E+01

30

Best 6.38E-06 8.28E+00 3.37E-01 1.62E+00 5.43E-04
Worst 3.57E+01 2.17E+02 9.97E+01 3.98E+01 9.85E+01
Mean 6.42E-05 6.59E+01 3.09E+00 1.29E+01 2.53E-03
Median 5.99E+01 4.00E+03 7.67E+02 1.26E+03 2.15E+02
StDev 3.12E+00 2.00E+01 1.72E+01 5.03E+00 1.94E+01

dimension D = 20, while the worst by optimizing the
same function with the highest dimension D = 30.
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Figure 2. Mean value of function f3 with various dimensions.

Interestingly, the mean value of a function f5 with
dimension D = 10 is the most difficult for the HBA
algorithm, while the same function with dimension
D = 20 is the easiest to solve. In contrast, the results
of the original BA algorithm showed that increasing the
dimensions also the results become worse.

As can be seen from Fig. 2, difficulty to solve the
function f3 is increased with increasing the dimensional-
ity of the problem. As a result, the most difficult function
to solve is the function f3 with dimension D = 30.
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Figure 3. Mean value of function f5 with various dimensions.

When comparing the results of the BA with the HBA,
it can be observed that results of HBA significantly
outperformed the results of the original BA algorithm
by optimizing the functions f1, f3, and f5. Functions
f2 and f4 by HBA are also better, but the difference is
not outstanding.

6 CONCLUSION

In this paper, we have improved the bat algorithm by
developing a new variant, called hybrid bat algorithm.
This new HBA is a hybrid of BA with DE strategies.
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Experiments has shown that this algorithm improves
significantly the original version of the bat algorithm.
In the future, hybrid bat algorithm would be tested on
large-scale global optimization. We will also do more
extensive testing using more diverse test function sets,
together with a detailed parametric study.
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