TILED EVOLISA IMAGE EVOLUTION WITH BLENDING TRIANGLE BRUSHSTROKES AND GENE COMPRESSION DE

ALES.ZAMUDA@UM.SI, UROS.MLAKAR@UM.SI http://labraj.feri.um.si

PROBLEM & NOVELTY

EvoLisa challenge: an image is to be approximated using artistic elements (such as brushstrokes).

New tiled image evolution approaches:

 \rightarrow Following 5 **methods** were developed:

- o) blending filled triangles and jDE,1) blending filled triangles and canonical DE with F = 0.5, CR = 0.9, filled triangles without blending, jDE, 2) empty triangles without blending, jDE, lines between first two encoded points in-4) stead of a triangle, jDE.

RESULTS

 \rightarrow These methods are tested on different **classes** of experiments:

class 1) setting MAXFES to 1e+6 (base class); class 2) setting MAXFES to 1e+8 and only running with the best settings $T_{max}, R_x = R_y$ where a best setting was found at the base class (1) experiment, and also $R_x = R_y = 100$ for that T_{max} ; and

class 3) setting parameter NP initially at 500 and halving it through 4 population reductions, while keeping the rest same as for class 2 (in order to also study the parameter *NP*).

METHOD & CONTRIBUTIONS

→ Using **differential evolution (DE)** optimization algorithm, a lossy image representation with variable number of brushstrokes is evolved.

• Several different methods to **represent or com-**

Fig. 1. The evolved and the reference images.

 $\mathbf{x}_{i,g}$

- **bine** a brushstroke on an image canvas,
- including the control parameters of the proposed methods.
- An image is **tiled** equidistantly and a **DE** is run on each tile separately.
- The proposed blending joins multiple brushstrokes over several pixels,
- while **gene compression** strives to select only the effective part of the potential full genome,
- it selects the **rendered codon** with a **limited sub**set number of brushstrokes.
- \rightarrow The difficulty increased significantly exponentially with FES – for all methods, when requiring smaller RN (residual noise) degree to attain. \rightarrow The results show that **different proposed** algorithms differ significantly in performance, but through a prolonged evolution they all obtain evolved images fairly closely resembling the reference images, which was not demonstrated yet at any previous EvoLisa experiments (previously, merely down to 5%–10% results were reported).

Tab. 1. Experiments 2, method 0 (ad hoc): final fitness [%].

BACKGROUND – DIFFERENTIAL EVOLUTION (DE)

 u_i

 $f(\mathbf{Z}) = 100 \times \frac{y=0}{x=0}$

Three DE operators: - mutation (Eq. (1)), - crossover (Eq. (2)), - selection (Eq. (3)). Add-ons: jDE (self-adaptation).

$$\mathbf{v}_{i,g+1} = \mathbf{x}_{r_1,g} + F(\mathbf{x}_{r_2,g} - \mathbf{x}_{r_3,g}), \tag{1}$$

$$,j,g+1 = \begin{cases} v_{i,j,g+1}, & \text{if } rand(0,1) \leq CR \text{ or } j = j_{rand}, \\ x_{i,j,g} & \text{otherwise}, \end{cases}$$

$$\mathbf{x}_{i,g+1} = \begin{cases} \mathbf{u}_{i,g+1} & \text{if } f(\mathbf{u}_{i,g+1}) < f(\mathbf{x}_{i,g}), \\ \mathbf{x}_{i,g} & \text{otherwise}. \end{cases}$$

$$(3)$$

(4)

(5)

(6)

(7)

(8)

(9)

ENCODING & FITNESS FUNCTION

1	1	X	/ []
Baboon (3)	Lena (4)	Plane (5)	Paprica(7)
4.3	3.46	3.18	3.58

REFERENCES

- [1] A. Zamuda, U. Mlakar. Tiled EvoLisa Image Evolution With Blending Triangle Brushstrokes and Gene Compression DE. IEEE World Congress on Computational Intelligence (IEEE WCCI), Vancouver, Canada, 24-29 July 2016.
- [2] A. Zamuda and U. Mlakar, "Differential Evolution Control Parameters Study for Self-Adaptive Triangular Brushstrokes," Informatica - An International *Journal of Computing and Informatics*, vol. 39, pp. 105– 113, 2015.

Gene compression: variable T_i (Eq. (4)).

Each triangle T_i encoded to 3 points: $P_{1,k}, P_{2,k}, P_{3,k}.$

Fitness (Eqs. (8),(9)): blending & reference image comparison.

$$T_{i} = \begin{cases} T_{i}^{\mathrm{U}} - T_{i}^{\mathrm{L}} + 1 & \text{if } T_{i}^{\mathrm{L}} < T_{i}^{\mathrm{U}} \\ (T^{\max} - T_{i}^{\mathrm{L}}) + T_{i}^{\mathrm{U}} & \text{otherwise.} \end{cases}$$

$$P_{1,k} = \left(\lfloor c_{x,k} + r_{k} \cos \alpha_{1,k} \rfloor, \lfloor c_{y,k} + r_{k} \sin \alpha_{1,k} \rfloor \right),$$

$$P_{2,k} = \left(\lfloor c_{x,k} + r_{k} \cos (\alpha_{1,k} + \pi], \lfloor c_{y,k} + r_{k} \sin (\alpha_{1,k} + \pi] \right),$$

$$P_{3,k} = \left(\lfloor c_{x,k} + r_{k} \cos \alpha_{2,k} \rfloor, \lfloor c_{y,k} + r_{k} \sin \alpha_{2,k} \rfloor \right).$$

 $\mathbf{z}_{k,x,y} = \sum_{\mathbf{T}_k \text{ over } (x,y)} \mathbf{b}_{k,x,y} = \sum_{\mathbf{T}_k \text{ over } (x,y)} \left[b_k \mathbf{b}_{k,x,y}^{\text{RGB}} \right],$ $R_{y}-1$ $R_{x}-1$ $\sum |z_{x,y}^{*R} - z_{x,y}^{R}| + |z_{x,y}^{*G} - z_{x,y}^{G}| + |z_{x,y}^{*B} - z_{x,y}^{R}|$

 $3 \times 255 \times R_{\rm x} R_{\rm v}$