
Multi-population Firefly Algorithm

Jani Dugonik
Faculty of Electrical Engineering and Computer

Science
University of Maribor

2000 Maribor, Slovenia
jani.dugonik@um.si

Iztok Fister
Faculty of Electrical Engineering and Computer

Science
University of Maribor

2000 Maribor, Slovenia
iztok.fister@um.si

ABSTRACT
This paper proposes a meta-heuristic Multi-Population Fire-
fly Algorithm (MPFA) for single-modal optimization using
two multi-population models, i.e., one is based on the island
model while the other on the mainland-island model. The
unique characteristics of each sub-population is evolved in-
dependently and the diversity of the entire population is ef-
fectively increased. Sub-populations communicate with each
other to exchange information in order to expand the search
range of the entire population. In line with this, each sub-
population explores a specific part of the search space and
contributes its part for exploring the global search space.
The main goal of this paper was to analyze the performance
between MPFA and the original Firefly Algorithm (FA). Ex-
periments were performed on a CEC 2014 benchmark suite
consisting of 16 single-objective functions and the obtained
results show improvements in most of them.
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1. INTRODUCTION
An optimization problem is defined as a quadruple OP =
〈I, S, f, goal〉, where I denotes a set of all input instances
x ∈ I in the form of x = {x1, x2, ..., xD} where D is the
dimensionality of the problem, S(x) a set of all feasible so-
lutions y = S(x), f is the objective function estimating
the feasible solution, and goal determines an optimal cri-
teria that can be either the minimum or maximum value
of the objective function. A task of the optimization algo-
rithm is to find the value of y∗ that minimizes or maximizes
(depending on the goal) the value of the objective function
f(y). The domain values of input variables xi ∈ [lbi, ubi]
are limited by their lower lbi and upper ubi bounds.

Nature has evolved over millions of years and has found per-
fect solutions to almost all encountered problems. We can

thus learn the success of problem-solving from nature and
develop nature-inspired heuristic and/or meta-heuristic al-
gorithms in order to solve optimization problems with which
developers are confronted today. Two sources from the na-
ture have particularly inspired developers of new optimiza-
tion algorithms, i.e., Darwinian evolution and the behavior
of social living insects (e.g., ants, bees, termites, etc.) and
other creatures (e.g., birds, dolphins, fireflies, etc.). As a
result, two main classes of nature-inspired algorithms exist
nowadays, i.e., evolutionary algorithms (EA) [3] and swarm
intelligence (SI)-based algorithms [1]. While the former al-
ready came in mature years, the latter has experienced rapid
development. Almost every day, we are witnessing the birth
of a new SI-based algorithm.

One of the younger members of the SI-based algorithms is
the Firefly Algorithm (FA) as proposed by Yang in [11].
FA is inspired by a chemical phenomenon bioluminiscence
needed by natural fireflies to find their prey, on the one
hand, and to attract their mating partners, on the other
hand. This algorithm belongs to a class of population-based
algorithms [5, 4, 11, 12]. Population-based approaches main-
tain and improve multiple candidate solutions, often using
population characteristics to guide the search. Two major
components of any population-based search algorithms are
exploitation and exploration. Exploitation refers to search-
ing within neighborhoods for the best solutions and ensures
that the solutions can converge into optimality, while the
exploration uses randomization in order to avoid the solu-
tions being trapped within a local optima and while at the
same time increasing the diversity of the solutions. A good
combination of these two components may usually ensure
that the global optimality is achieved [11].

One of the possible ways of how to improve the exploration
and exploitation in the original FA algorithm can be split-
ting the FA population into more sub-populations (so-called
multi-populations). For instance, the authors in [10] pre-
sented a multi-population FA for correlated data routing
within underwater wireless sensor networks. They designed
three kinds of fireflies and their coordination rules in or-
der to improve the adaptabilities of building, selecting, and
optimizing a routing path. Groups are represented as sub-
populations, where each sub-population conducts its own
optimization in order to improve the convergence speed and
solution precision of the algorithm. The author in [13] ana-
lyzed the ability of a multi-population differential evolution
to locate all optima of a multi-modal function. The explo-



ration was ensured by the controled initialization of sub-
populations while a particular differential evolution algo-
rithm ensured the exploitation. Sub-populations were com-
municating via archive where all located optima were stored.
The authors in [8] used an evolutionary algorithm on punc-
tuated equilibria. The theory of punctuated equilibria calls
for the population to be split into several sub-populations.
These sub-populations have isolated evolution (computa-
tion) and scattered with migration (communication).

This paper aimed to evaluate whether it is possible to out-
perform the performance of the original FA algorithm by
splitting its population into more sub-populations. The pro-
posed multi-population FA (MPFA) supports two multi-
population models, i.e., Island [13] and Mainland-Island [9].
In these multi-population models, sub-populations evolve in-
dependently, thus the unique characteristics of each sub-
population can be effectively maintained, and the diver-
sity of the entire population is effectively increased. Sub-
populations communicate with each other by exchanging in-
formation in order to expand the search range of the entire
population. The search technique based on a population has
proved to have good ability regarding global searching and
can find a set of solutions in one-shot operation. The pro-
posed multi-population FAs were compared with the original
FA on single-objective CEC 2014 benchmark functions [7].

The remainder of this paper is organized as follows. In Sec-
tion 2 the original FA will be presented. In Section 3 a
multi-population FA with two multi-population models are
presented in detail. Section 4 presents experiments, where
the number of tests were performed in order to compare the
proposed approach with the original FA. The paper is con-
cluded with Section 5, where our opinion on the obtained
results is given.

2. THE ORIGINAL FIREFLY ALGORITHM
The Firefly Algorithm (FA) [11] has two fundamental fac-
tors: light intensity and attractiveness. Light intensity I
reflects the firefly location and determines its direction of
movement, while the degree of attractiveness determines the
distance that a firefly has moved. Both factors are con-
stantly updated in order to achieve the objective of the op-
timization.

For simplicity, the author in [11] used the following three
idealized rules:

• All fireflies are unisex so that one firefly will be at-
tracted to other fireflies regardless of their sex.

• Attractiveness is proportional to their brightness and
for any two flashing fireflies, the dimmer one will move
towards the brighter one. They both decrease as their
distance increases. If there is no brighter one, it will
move randomly.

• The brightness of a firefly is affected or determined by
the landscape of the objective function.

Based on these three rules, the basic steps of the firefly al-
gorithm (FA) can be summarized as the pseudo-code shown

Algorithm 1 Firefly Algorithm

1: Objective function f(x), x = (x1, ..., xD)T

2: Generate initial population of fireflies xi (i=1,2,...,Np)
3: Light intensity Ii at xi is determined by f(xi)
4: Define light absorption coefficient γ
5: while (t < Gmax) do
6: for i=1 to n fireflies do
7: for j=1 to n fireflies do
8: if (Ij > Ii) then
9: Move firefly i towards firefly j Eq. (3)

10: end if
11: Evaluate new solution and update light in-

tensity Eq. (1)
12: end for
13: Rank fireflies and find the current best
14: end for
15: Post-process results and visualization
16: end while

in Algorithm 1. Light intensity of a firefly is defined as:

I(r) = I0 · e−γ·r
2

(1)

where I0 is the original light intensity at the location of r =
0, γ is the light absorption coefficient and r is the distance
between two fireflies. The distance between any two fireflies
i and j at xi and xj can be expressed as Cartesian distance
rij = ||xi − xj ||. As firefly attractiveness is proportional
to the light intensity, we can define the attractiveness of a
firefly using the following equation:

β(r) = β0e
−γ·r2 (2)

where β0 is their attractiveness at r = 0. Firefly i that is
attracted to another more attractive firefly j is determined
by:

xi = β0e
−γ·r2 · (xj − xi) + α · εi (3)

which is randomized with the vector of random variable εi,
being drawn from a Gaussian distribution, and step factor
α ∈ [0, 1].

3. THE MULTI-POPULATION FIREFLY AL-
GORITHM

The multi-population firefly algorithm (MPFA) can be sum-
marized in the pseudo-code as shown in Algorithm 2. MPFA
will consider there to be an overall population P of Np
fireflies (individuals) that is split into N sub-populations
P1, P2, ...PN . Each sub-population has Nsp individuals and
the number of N sub-populations is calculated with the fol-
lowing equation:

N =
Np

Nsp
(4)

For sub-populations to communicate with each other, the
magnitude and frequency of that communication are neces-
sary. These two parameters determine the amount of iso-
lation and interaction between sub-populations. Periods of
isolated evolution are referred to as epoch, with migration



Algorithm 2 Multi-Population Firefly Algorithm

1: Objective function f(x), x = (x1, ..., xD)T

2: Calculate number of sub-populations (N)
3: for all n ∈ N do
4: Generate initial sub-population Pn of fireflies xi

(i=1,2,...,Np)
5: end for
6: Light intensity Ii at xi is determined by f(xi)
7: Define light absorption coefficient γ
8: for e=1 to Gmax

epoch
do

9: for all n ∈ N do
10: for g=1 to epoch do
11: for i=1 to n fireflies do
12: for j=1 to n fireflies do
13: if (Ij > Ii) then
14: Move firefly i towards firefly j
15: end if
16: Evaluate new solutions
17: Update light intensity
18: end for
19: Rank fireflies and find the current best
20: end for
21: end for
22: end for
23: Migrate fireflies
24: end for
25: Find the best firefly from all sub-populations
26: Post-process results and visualization

occurring at the end of each epoch except the last. The
length of the epoch determines the frequency of interac-
tion and is usually specified by a number of generations
(epoch) that Pn evolves in isolation. During the epoch, each
sub-population executes a sequential FA for epoch indepen-
dently. At the end of each epoch, individuals are migrated
between sub-populations. There are many various migra-
tion strategies in multi-population models. The following
two models are described and used in this paper: island and
mainland-island model.

3.1 Island Model
The island Model Firefly Algorithm (MPFA-In, where n de-
termines the number of sub-populations) consist of islands,
where islands are referred to as sub-populations. When each
sub-population is executed a sequential FA for epoch gener-
ations, individuals are migrated between sub-populations,
as shown in Algorithm 3. The magnitude of the commu-
nication is defined, for instance, as Nm = 25%. Then,
Nm percent of migrants are chosen for each sub-population
which were exchanged with other sub-populations, as shown
in Figure 1. Let us assume two sub-populations P1 and P2

with Nsp = 10 and Nm = 20% are defined. Then, two
individuals from sub-population P1 are exchanged with two
individuals in sub-population P2. Thus, the sizes of the sub-
populations remain the same. After the algorithm reaches
the termination criteria, the best individual is taken from
all sub-populations.

3.2 Mainland-Island Model
The Mainland-Island Model Firefly Algorithm (MPFA-Mn,
where n determines the number of sub-populations) consist

Figure 1: Island Model

Algorithm 3 Multi-Population Firefly Algorithm with Is-
land Model - Migration

1: Get the number of migrants Nm to migrate
2: for i = 1 to N do
3: Choose Nm individuals from Pi that are mutually

different and save them to the matrix M
4: end for
5: Mutually exchange individuals that are defined in ma-

trix M

of mainland and islands, where mainland and islands are re-
ferred to as sub-populations. When each sub-population has
executed a sequential FA for Gi generations, individuals are
migrated from sub-populations P2, ..., PN to sub-population
P1, as shown in Algorithm 4. Let us assume two sub-
populations P1 and P2 with Nsp = 10 andNm = 20% are de-
fined. Then, two individuals per sub-population P2, ..., PN
are moved to sub-population P1, as shown in Figure 2. At
the end of migration, sub-population P1 is sorted according
to the fitness values of migrated individuals. In order to keep
the size of sub-population P1 the same, the top Nsp individ-
uals are retained, while the others are discarded. After the
algorithm has reached the terminating criteria, the best in-
dividual was taken from the sub-population P1 (mainland).

Algorithm 4 Multi-Population Firefly Algorithm with
Mainland-Island Model - Migration

1: Get the number of migrants Nm to migrate
2: for i = 2 to N do
3: Choose Nm individuals from Pi that are mutually

different and save them to the matrix M
4: end for
5: Copy chosen individuals from sub-populations
P2, ..., PN to sub-population P1

6: Sort individuals in P1 by light intensity
7: Keep top Nsp individuals, remove others, so the size of

the sub-population P1 remains the same

4. EXPERIMENTS AND RESULTS
The goal of this experimental work was to show that MPFA
can outperform the results of the original FA algorithm. In
our experiments, the results of the original FA were com-
pared with the results of the following MPFA: MPFA-I2
and MPFA-I4 (i.e., MPFA with island model using two or
four sub-populations), and MPFA-M2 and MPFA-M4 (i.e.,
MPFA with mainland-island model using two or four sub-
populations). Additionally, the following three population
models were used during tests, i.e., small with an original



Table 1: Comparison between FA algorithms for population model Np=100 and D=10

Func. FA MPFA-I2 MPFA-I4 MPFA-M2 MPFA-M4
1 1.0243e+06 ± 2.0147e+06 7.6582e+05 ± 3.4941e+06 6.4129+e05 ± 2.3202e+06 7.6582e+05 ± 3.4929e+06 5.0199e+05 ± 9.3012e+05
2 1.3862e+04 ± 8.2668e+03 6.1151e+03 ± 4.8489e+03 5.4070+e03 ± 4.0991e+03 6.1151e+03 ± 4.8489e+03 6.5121e+03 ± 8.0172e+03
3 2.0877e+04 ± 1.9394e+04 2.2167e+04 ± 2.0586e+04 1.6543e+04 ± 1.3981e+04 2.2167e+04 ± 2.0586e+04 2.3253e+04 ± 2.6483e+04
4 7.7409e+00 ± 1.6024e+01 6.9890e+00 ± 1.1157e+01 7.0024e+00 ± 2.9768e+01 7.1320e+00 ± 1.0983e+01 6.8717e+00 ± 8.8252e+00
5 2.0107e+01 ± 0.0704e+00 2.0059e+01 ± 0.0405e+00 2.0035e+01 ± 0.0260e+00 2.0059e+01 ± 0.0405e+00 2.0044e+01 ± 0.0380e+00
6 8.4299e+00 ± 4.0688e+00 8.9432e+00 ± 2.5879e+00 8.3829e+00 ± 2.6099e+00 8.9432e+00 ± 2.5879e+00 9.6953e+00 ± 3.2605e+00
7 5.4650e+00 ± 6.2455e+00 9.9181e+00 ± 1.0126e+01 5.8841e+00 ± 4.6803e+00 9.9181e+00 ± 1.0126e+01 5.3097e+00 ± 5.9105e+00
8 1.6925e+01 ± 1.5711e+01 2.3883e+01 ± 2.3057e+01 2.1892e+01 ± 1.4542e+01 2.3883e+01 ± 2.3057e+01 3.0847e+01 ± 2.5583e+01
9 1.6924e+01 ± 1.2980e+01 1.8907e+01 ± 2.0379e+01 1.9903e+01 ± 1.6285e+01 1.8907e+01 ± 2.0379e+01 3.0847e+01 ± 2.7831e+01
10 1.1733e+03 ± 9.0738e+02 1.3110e+03 ± 1.1059e+03 1.0351e+03 ± 8.9937e+02 1.3110e+03 ± 1.1157e+03 1.2901e+03 ± 1.4476e+03
11 1.1434e+03 ± 9.9968e+02 1.2193e+03 ± 1.0618e+03 9.1012e+02 ± 8.3705e+02 1.2193e+03 ± 1.0618e+03 1.3165e+03 ± 1.1339e+03
12 0.4707e+00 ± 0.9716e+00 0.3272e+00 ± 1.0509e+00 0.1942e+00 ± 0.4033e+00 0.3272e+00 ± 1.0509e+00 0.4343e+00 ± 1.7646e+00
13 0.3973e+00 ± 0.3133e+00 0.3949e+00 ± 0.3414e+00 0.3137e+00 ± 0.2133e+00 0.3949e+00 ± 0.3414e+00 0.3578e+00 ± 0.3217e+00
14 0.3618e+00 ± 0.2481e+00 0.3578e+00 ± 0.2386e+00 0.3260e+00 ± 0.1413e+00 0.3578e+00 ± 0.2386e+00 0.3378e+00 ± 0.2627e+00
15 1.3559e+01 ± 1.5484e+01 1.7627e+01 ± 1.5247e+01 2.1337e+01 ± 1.8450e+01 1.7627e+01 ± 1.5247e+01 2.8024e+01 ± 2.6350e+01
16 3.7235e+00 ± 0.5893e+00 3.8952e+00 ± 0.7525e+00 3.7126e+00 ± 0.7731e+00 3.8952e+00 ± 0.7525e+00 4.0390e+00 ± 0.7963e+00

Figure 2: Mainland-Island Model

population size of Np = 100, medium with Np = 200 and
large with Np = 400. The original population size was di-
vided between sub-population according to Eq. (4). The
same number of generations Gmax = 1, 000 was used for
each sub-population for each algorithm.

The FA algorithms used the following parameter settings.
The maximum number of evaluations was set as MAX FEs =
10, 000 ·D. The randomized factor was fixed at α = 0.5, the
lights absorption at γ = 1, and the attractiveness at the be-
ginning β0 = 1. In each generation the randomized factor α
was updated by the following equation: α = α·(1−δ), where

δ = 1.0 − ( 104

0.9
)

1
G [5]. For the MPFA algorithms, some ad-

ditional parameters were used, like the number of epochs as
epoch = 100, and migration probability Nm = 25%. Tests
were conducted on all three population models using five
FA algorithms, i.e., FA, MPFA-I2, MPFA-I4, MPFA-M2,
and MPFA-M4. In summary, 15 tests were performed, in
which 51 independent runs were performed.

All algorithms were tested on the 16 single-objective uni-
modal and simple multi-modal CEC 2014 benchmark func-
tions [7]. For uni-modal functions the convexity guarantees
that the final optimal solution is also the global optimum.
The global maximum was measured according to an error
value ER. The error value for each function is calculated
by subtracting the value of global optima from the obtained
value according to the following equation:

ERi = fi(x)− fi(x∗), [7] (5)

where i is the function number, fi(x) is the obtained value,
and fi(x∗) = 100·i is the value of global optima for i-th func-

tion. Note that error values smaller than 10−8 were taken as
zero. In order to limit a search space, each problem variable
can capture the value from the range xi ∈ [−100, 100]D,
where values -100 and 100 represent its upper and lower
bounds. The dimensionality of all problems was limited to
D = 10.

The results of the mentioned FA algorithms are illustrated
in Table 1. The results for all population models (i.e., small,
medium, large) were obtained. Small population model (Np =
100) gave the best results, and due to the paper’s length lim-
itation only these results are presented in this table. In line
with this, the original FA algorithm is compared with the
MPFA-I2 and MPFA-M2 using two sub-populations of size
Nsp = 50, and MPFA-I4 and MPFA-M4 using four sub-
populations of size Nsp = 25. The table presents mean and
standard deviation over 51 independent runs for each algo-
rithm. The results in Table 1 show that MPFA-I2 as well
as MPFA-M2 outperformed the original FA on 7 out of 16
test functions, MPFA-M4 on 8 out of 16 test functions and
MPFA-I4 on 12 out of 16 test functions. The best results
were obtained with MPFA-I4 which outperformed the other
MPFAs and the original FA on 10 out of 16 functions.

In order to evaluate the quality of the results statistically,
Friedman tests [6] were conducted that compare the average
ranks of the compared algorithms. Thus, a null-hypothesis is
placed that states: two algorithms are equivalent and there-
fore, their ranks should be equal. When the null-hypothesis
is rejected, the Bonferroni-Dunn test [2] is performed. In
this test, the critical difference is calculated between the
average ranks of those two algorithms. If the statistical dif-
ference is higher than the critical difference, the algorithms
are significantly different.

Three Friedman tests were performed regarding data ob-
tained by optimizing 16 functions of three different popula-
tion sizes according to five measures. As a result, each algo-
rithm during the tests (also the classifier) was compared with
regard to the 48 functions x 5 measurements this means,
240 different variables. The tests were conducted at a sig-
nificance level of 0.05. The results of the Friedman non-
parametric test can be seen in Figure 3 that is divided into
three diagrams. Each diagram shows the ranks and confi-
dence intervals (critical differences) for the algorithms under
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Figure 3: Results of the Friedman non-parametric test

consideration with regard to the dimensions of the functions.
Note that the significant difference between the two algo-
rithms is observed if their confidence intervals denoted as
thickened lines in Fig. 3 do not overlap.

As can be seen from Fig. 3, the MPFA-I4 outperformed the
results of the original FA as well as the other algorithms
using all three observed population size model significantly.
The MPFA-M4 achieved the results that are significantly
worse than the results of the other FA algorithms. The
performances of the other three algorithms were comparable
with each other.

5. CONCLUSION
In this paper, we proposed MPFA using two multi-population
models, i.e., Island and Mainland-Island Models. The pro-
posed MPFAs were compared with the original FA algorithm
using three different population size models (i.e., small, medium,
large) by solving the CEC-14 benchmark function suite. Based
on the obtained results, we can see that the most promising
results were obtained by the MPFA-I4. This fact encourage
us to continue with the experiments of multi-population FA
in the future.

The future work could be especially focused on the migra-
tion probability and dimension of the problem. Current mi-
gration probability was fixed for all multi-population mod-
els, but the migration probability can be modified or even
adapted during the algorithm run. On the other hand, all
the performed tests were done on small dimensions of the
problem. Thus, the algorithm with few number of evalua-
tions and larger population sizes did not reach the migration
phase at all. With larger dimensions, the number of evalua-
tions would be increased and the multi-population strategies
could perform even better.
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