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Abstract In this paper we present experimental results of self-adaptive differential
evolution algorithm hybridized with a local search method. The results
of the proposed hybrid algorithm are evaluated on a set of benchmark
functions provided by the IEEE Congress on Evolutionary Computation
(CEC 2008) special session on Large Scale Global Optimization. Perfor-
mance comparison of our algorithm with other algorithms is reported.
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1. Introduction

In recent years numerous stochastic optimization algorithms have
been proposed to solve real-parameter optimization problems, such as
evolution strategies, real-parameter genetic algorithms, simulated an-
nealing, differential evolution, particle swarm optimization, ant-colony
optimization, evolutionary algorithms, etc. The optimization problem
is to find ~x, which optimizes the objective function f(~x) where ~x =
[x1, x2, ..., xD]T is a set of real variables. D is the dimensionality of
the search space. Domains of the variables are defined by their lower
and upper bounds: xj,low, xj,upp; j ∈ {1, ...,D}. A priori knowledge
about the objective function is usually very limited and, in practice, the
objective function is often nonlinear, multi-modal, etc.

In this paper we hybridize our self-adaptive differential evolution al-
gorithm jDEdynNP [6] with a local search procedure. The performance
of the new algorithm is evaluated on a set of benchmark functions pro-
vided by CEC 2008 special session on Large Scale Global Optimization
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(LSGO) [21] at the IEEE World Congress on Computational Intelligence
(WCCI 2008).

2. Background

In this section we give an overview of previous work. The references
to source code of the original differential evolution (DE) algorithm are
presented. Then the self-adaptive mechanism used in our DE algorithm
is briefly outlined. In section 3 the SQP local search procedure is de-
scribed.

To solve high-dimensional problems [21], cooperative coevolution [15,
19] can be used. Liu et al. [12] used FEP (Fast Evolutionary Pro-
gramming) with cooperative coevolution (FEPCC) to speedup conver-
gence rates on large-scale problems, Bergh and Engelbrecht [23] used
a Cooperative Approach to Particle Swarm Optimisation (PSO), Yang,
Tang and Yao used differential evolution with cooperative coevolution
(DECC) [25], recently. Gao and Wang [9] used a memetic DE algo-
rithm for high-dimensional problem optimization. There were 8 papers
accepted to LSGO at CEC 2008: [26, 10, 6, 13, 22, 27, 28, 24] and many
of them used DE.

2.1 The Differential Evolution Algorithm

DE is a population based evolutionary algorithm proposed by Storn
and Price [20, 18]. The original DE has three control parameters: ampli-
fication factor of the difference vector – F , crossover control parameter
– CR, and population size – NP . During one generation for each vector,
DE employs the mutation, crossover and selection operations to produce
a new vector for the next generation. DE [20, 16, 8] has been shown to
be a simple yet powerful evolutionary algorithm for global optimization
in many real problems [14].

In this paper we will skip a detailed description of the DE algorithm.
The algorithm is widely used in many research areas and it is imple-
mented in several programming languages (for source code of the al-
gorithm see DE homepage: http://www.icsi.berkeley.edu/~storn/

code.html).

2.2 The Self-adaptive DE Algorithm

In this subsection we revise our jDEdynNP-F algorithm [6], which was
proposed at the CEC 2008 special session. The jDEdynNP-F algorithm
applies self-adapted F and CR control parameters and a population size
reduction method. Additionally, it implements a mechanism for sign
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changing of F control parameter with some probability based on the
fitness values of randomly chosen vectors, which are multiplied by the F

control parameter (scaling factor) in the mutation operation of the DE
algorithm.

The jDEdynNP-F algorithm uses the same self-adaptive control mech-
anism as it was first proposed in [4] and lately used in many other vari-
ants [7, 3, 5, 2]. This mechanism changes the control parameters F and
CR during the run.

The jDEdynNP-F algorithm implements the method for gradually re-
ducing population size [5] during the optimization process. The dynamic
population size reduction mechanism is used in the jDEdynNP-F algo-
rithm to start optimization with the greatest population at the beginning
of the evolutionary process, and finishes optimization with the smallest
population size. The population size is gradually reduced. In [5, 6] we
proposed a reduction scheme where the new population size is equal to
half of the previous population size.

The jDEdynNP-F algorithm applies a mechanism that changes the
sign of the control parameter F with some probability (prob = 0.75)
when f(~xr2

) > f(~xr3
) during the mutation operation as presented in

Fig. 1. rand generates random numbers uniformly distributed between 0
and 1. This mechanism uses rand/1/bin/ DE strategy and was proposed
in [6].

// individuals’ objective function values are stored in array named cost
prob = 0.75; // probability for changing the sign
if (rand < prob && cost[r2] > cost[r3])

F = -F; // sign change

Figure 1. The control parameter F changes sign.

In this paper, the jDEdynNP-F algorithm is hybridized for the first
time with a local search procedure, which is presented in the following
section.

3. Sequential Quadratic Programming (SQP)

Sequential Quadratic Programming (SQP) [17, 1] is a non-linear opti-
mization method based on gradient computation. It is a generalization
of Newton’s method to multiple dimensions, incorporating a quadratic
approximation model for the objective function given an initial guess
for the solution. Great strength of the SQP method is its ability to
solve problems with nonlinear constraints. The approximation model is
solved at each iteration to yield a step toward the solution of the original
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Table 1. LSGO@CEC’08 benchmark functions

F1 Shifted Sphere Function uni-modal separable
F2 Shifted Schwefel’s Problem 2.21 uni-modal non-separable
F3 Shifted Rosenbrock’s Function multi-modal non-separable
F4 Shifted Rastrigin’s Function multi-modal separable
F5 Shifted Griewank’s Function multi-modal non-separable
F6 Shifted Ackley’s Function multi-modal separable
F7 FastFractal ”DoubleDip” Function multi-modal separable

problem. As with most optimization methods, SQP is not a single al-
gorithm, but rather a conceptual method from which numerous specific
algorithms have evolved [1].

The algorithm for SQP we have used is FSQP-AL and its implemen-
tation is given in CfSQP [11]. The norm of descant direction was set to
ǫ =1.e–8. Constraints were enforced only in terms of bounds to search
parameters, i.e. linear bound-constraints were used.

Hybridization of the chosen local search algorithm in our global op-
timization jDEdynNP-F algorithm was as follows. First, the global al-
gorithm was run for 30% of maximum number of function evaluations
(MAXFEs). Then after every 100 generations (note that we have dy-
namic population size during the evolutionary process), we employed the
local search method on the fittest individual of the current population.
The number of iterations of the SQP method that were used to refine

the given solution was set to ⌊
√

D
5
⌋.

After the SQP local search procedure is called, we check whether
the new obtained individual (result from SQP procedure) is better than
the currently best individual. If SQP finds a better individual (in this
case SQP returns a positive value), it will be stored, otherwise when
SQP returns a negative value we do not use SQP in the rest of the
evolutionary process. The suggested mechanism seems to work fine with
fractal function F7, when the SQP local search procedure usually could
not make any improvement of the currently best individual.

4. Experimental Results

In this section we present results of experiments, which were made in
order to present the performance of the proposed hybrid algorithm.

Table 1 shows characteristics of CEC 2008 benchmark functions.
Table 2 presents the obtained results of our hybrid algorithm on the

benchmark functions. The error values (f(~x) − f(~x∗)) are presented
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Table 2. Error values achieved for problems F1–F6, with D = 1000. Function value
achieved for function F7 with D = 1000

jDEdynNP-F [6] jDEdynNP-F with SQP
Mean Std. dev. Mean Std. dev.

F1 1.1369e–13 0.0000 1.1141e-13 1.1369e-14
F2 1.9529e+01 2.2525 2.6582e+01 1.6529
F3 1.3136e+03 1.3635e+02 3.2719e+02 1.7768e+02
F4 2.1668e–04 4.0563e–04 8.3060e-12 3.6271e-12
F5 3.9790e–14 1.4211e–14 5.0022e-14 1.2389e-14
F6 1.4687e–11 2.4310e–11 3.7630e-13 3.8851e-13

F7 –1.3491e+04 4.6038e+01 -1.3766e+04 8.2836e+01

in the table. The optimal solution results are known for benchmark
functions F1–F6, while for function F7 the optimal solution value is not
given.

Figure 2 shows the convergence graphs for functions F1–F7 on D =
100 with and without SQP local search procedure for the best, median
and worst individuals obtained at the end of the evolutionary process.
Figures 3 and 4 show convergence graphs for functions when D = 500
and D = 1000, respectively.

The convergence graphs show that the algorithm with the SQP per-
forms better than the algorithm without SQP in most cases, exception is
function F2 (Schwefel’s Problem 2.21 ) when D = 1000. The algorithm
with the SQP obviously gives better results on functions F3 (Rosen-
brock’s function), and F4 (Rastrigin’s function) when D = 1000.

In this experiment we did not make fine tuning of the SQP’s parame-
ters, i.e. when starting SQP, how many iterations may be used by SQP,
etc.

The summary result of the LSGO 2008 competition are available
at http://nical.ustc.edu.cn/papers/CEC2008_SUMMARY.pdf, where
results comparison on D = 1000 functions are presented. The jDEdynNP-
F algorithm took third place, after [22] and [24].

The mean value obtained by our proposed algorithm with the SQP
is lower than 1.e–10 (roughly speaking, a function is solved, when mean
value drops under 1.e–10) for functions F1 (6), F4 (2), F5 (6), and F6 (4).
In the parentheses after function we give a number of LSGO algorithms
that also reached bound 1.e–10 (note, the competition included eight
algorithms).



64 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

 1e-14
 1e-12
 1e-10
 1e-08
 1e-06
 1e-04

 0.01
 1

 100
 10000
 1e+06

 0  100000 200000 300000 400000 500000

lo
g(

f(
x)

-f
(x

*)
)

FEs

Benchmark function F1

without SQP
with SQP

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0  100000 200000 300000 400000 500000

lo
g(

f(
x)

-f
(x

*)
)

FEs

Benchmark function F3

without SQP
with SQP

 1e-14
 1e-12
 1e-10
 1e-08
 1e-06
 1e-04

 0.01
 1

 100
 10000

 0  100000 200000 300000 400000 500000

lo
g(

f(
x)

-f
(x

*)
)

FEs

Benchmark function F5

without SQP
with SQP

-1500

-1400

-1300

-1200

-1100

-1000

-900

-800

-700

 0  100000  200000  300000  400000  500000

f(
x)

FEs

Benchmark function F7

without SQP
with SQP

 0.01

 0.1

 1

 10

 100

 1000

 0  100000  200000  300000  400000  500000

lo
g(

f(
x)

-f
(x

*)
)

FEs

Benchmark function F2

without SQP
with SQP

 1e-14
 1e-12
 1e-10
 1e-08
 1e-06
 1e-04

 0.01
 1

 100
 10000

 0  100000 200000 300000 400000 500000

lo
g(

f(
x)

-f
(x

*)
)

FEs

Benchmark function F4

without SQP
with SQP

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100

 0  100000 200000 300000 400000 500000

lo
g(

f(
x)

-f
(x

*)
)

FEs

Benchmark function F6

without SQP
with SQP

Figure 2. Convergence graphs for functions F1–F6 with D = 100.



Self-Adaptive Differential Evolution with SQP Local Search 65

 1e-14
 1e-12
 1e-10
 1e-08
 1e-06
 1e-04

 0.01
 1

 100
 10000
 1e+06
 1e+08

 0  500000  1e+06  1.5e+06  2e+06  2.5e+06

lo
g(

f(
x)

-f
(x

*)
)

FEs

Benchmark function F1

without SQP
with SQP

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 0  500000  1e+06  1.5e+06  2e+06  2.5e+06

lo
g(

f(
x)

-f
(x

*)
)

FEs

Benchmark function F3

without SQP
with SQP

 1e-14
 1e-12
 1e-10
 1e-08
 1e-06
 1e-04

 0.01
 1

 100
 10000
 1e+06

 0  500000  1e+06  1.5e+06  2e+06  2.5e+06

lo
g(

f(
x)

-f
(x

*)
)

FEs

Benchmark function F5

without SQP
with SQP

-7500
-7000
-6500
-6000
-5500
-5000
-4500
-4000
-3500
-3000

 0  500000  1e+06  1.5e+06  2e+06  2.5e+06

f(
x)

FEs

Benchmark function F7

without SQP
with SQP

 1

 10

 100

 1000

 0  500000  1e+06  1.5e+06  2e+06  2.5e+06

lo
g(

f(
x)

-f
(x

*)
)

FEs

Benchmark function F2

without SQP
with SQP

 1e-14
 1e-12
 1e-10
 1e-08
 1e-06
 1e-04

 0.01
 1

 100
 10000
 1e+06

 0  500000  1e+06  1.5e+06  2e+06  2.5e+06
lo

g(
f(

x)
-f

(x
*)

)

FEs

Benchmark function F4

without SQP
with SQP

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100

 0  500000  1e+06  1.5e+06  2e+06  2.5e+06

lo
g(

f(
x)

-f
(x

*)
)

FEs

Benchmark function F6

without SQP
with SQP

Figure 3. Convergence graphs for functions F1–F6 with D = 500.
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Figure 4. Convergence graphs for functions F1–F6 with D = 1000.
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Our algorithm has rank 4, 2, and 3 for functions F2, F3, F7, respec-
tively. Based on this comparison of the jDEdynNP-F with SQP with
the LSGO 2008 results, we can conclude that our algorithm is highly
competitive on all LSGO 2008 functions when D = 1000.

5. Conclusions

This paper presents our attempt to hybridize self-adaptive differen-
tial jDEdynNP-F algorithm with SQP local search procedure. The ex-
perimental results confirm that the proposed hybrid algorithm might
perform better than the algorithm without SQP. The better parameter
setting for the SQP and deep insight of it are challenges for future work.
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