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Abstract. Object-oriented techniques and
concepts have been successfully used in language
specification and formalization. They greatly
improve modularity, reausability and extensibility.
In spite of using OO paradigms in language
specification, some semantic aspects still crosscut
many language constructs. Improvements can
be achieved with aspect-oriented techniques.
The paper describes AspectLISA tool wich uses
aspect-oriented approach for language specifi-
cation (aspect-oriented attribute grammars). An
example will be worked out in order to illustrate
the approach. We will show how to identify an
aspect, specify it in the concrete AspectLisa syn-
tax, and how to gather parts in order to develop a
complete language processor.
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1 Introduction

It is a well-known fact that programming lan-
guage definitions are hard to be efficiently mod-
ularized. Moreover, new programming languages
are hard to build simply by incorporating differ-
ent language components due to complex inter-

actions among different language features. Here,
object-oriented techniques and concepts, like en-
capsulation and inheritance, have much to offer
and improve language specifications toward better
modularity, reusability, and extensibility. Object-
oriented notations have been integrated with at-
tribute grammars a long time ago [13]. In this
case context-free grammars define the class hierar-
chy. Nonterminals act as abstract super classes and
productions act as specialized concrete subclasses
that specify the syntactic structure, attributes and
semantic rules. All these elements can be in-
herited, specialized, and overridden in subclasses.
One of the shortcomings of this approach is that
right-hand nonterminals cannot have inherited at-
tributes and the other is that only small features
can be added to the language. In other words, lan-
guage can not evolve dramatically. Another prob-
lem is that the class hierarchy defines the mod-
ularization based on language syntax constructs,
whereas the language developer also wants to have
modules based on different aspects (e.g. name
analysis, type checking, code generation, etc). The
goal of intentional programming (IP) [2] was also
a modular language implementation system where
intentions are plug-and-play components. Achiev-
ing independence of components (intentions) was
the main technical challenge. Modularity and



reusability was achieved using forwarding [15],
a variation of inheritance in attribute grammars,
and aspects. A programming language can be
built simply by importing an appropriate set of
such components or can be extended by a rich
set of features, and each of these features is a re-
usable component. The IP project failed despite
state-of-the art modularity of language specifica-
tions being achieved. In our opinion the reason
is that it was too ambitious, expecting death of
programming languages. Moreover, again it was
proven how complex the interactions of different
language features are. Modularity and reusabil-
ity can be achieved also using other non object-
oriented techniques. One of the recent achieve-
ments regarding better reusability and modularity
of action semantics is reported in [4]. The authors
propose a finer modular structure where a new se-
mantic equation module is constructed for each
production. The final language definition module
is obtained simply by importing them together, as-
suming that the symbols they share correspond to
common features. It is our belief that a fine mod-
ular structure is not feasible for real programming
languages, just as a monolithic structure is infea-
sible, since optimal granularity is somewhere be-
tween two extreme options. Modularity and ex-
tensibility of specifications based on denotational
semantics are much harder to achieve. Some at-
tempts were made in [8]. Despite their usefulness
language specification languages are not popular.
Among the reasons are classical ones such as that
they are hard to understand, modify and maintain.
Many of these problems can be attributed to non-
modularity, non-extensibility and non-reusability
of language specifications.
As already mentioned, the use of object-oriented
techniques and concepts, like encapsulation and
inheritance, greatly improves language specifica-
tions towards better modularity, reusability and
extensibility. However, additional improvements
can be achieved with aspect-oriented techniques
since semantic aspects also crosscut many lan-
guage constructs. Indeed, aspect-oriented con-
structs have already been added to some language
specifications.
In this paper an aspect-oriented extension to LISA
(AspectLISA) specification language is presented.
The LISA system is the compiler/interpreter gen-
erator based on object-oriented attribute gram-
mars. The paper is organized as follows. A brief

introduction to aspect-oriented approach in lan-
guage development and related work is presented
in section 2. Section 3 is most important and de-
scribes our aspect-oriented approach and tool for
language development. A case study which illus-
trate our ideas follows in section 4. The conclud-
ing comments are mentioned in section 5.

2 Specifying a language with as-
pects

The major abstraction technique in software en-
gineering is to divide the system into functional
components in such manner that changes to a par-
ticular component do not propagate through the
entire system [3]. However some issues, called
aspects, are system wide and cannot be put into
a single functional component. Failure handling,
persistence, communication, coordination, mem-
ory management, are aspects of a system behavior
that tend to crosscut groups of functional compo-
nents. As a consequence, functional components
are tangled with aspect code. This tangling prob-
lem makes functional components less reusable,
difficult to develop, understand and evolve. A
solution is provided by aspect-oriented program-
ming (AOP) [6] which is a programming tech-
nique for modularizing concerns that crosscut the
basic functionality of programs. In AOP, aspect
languages are used to describe properties which
crosscut basic functionality in a clean and a mod-
ular way. Despite that the main part of AOP re-
search is devoted to general-purpose languages
[6, 9] similar problems exists in domain-specific
languages [10]. For example, in language speci-
fications modularization is usually based on lan-
guage syntax constructs (e.g., declarations, ex-
pressions, commands). Adding new functionality
to the existing language, such as a new expression,
can be usually done in a modular way. Only syn-
tax production and semantics for expressions have
to be changed. In this case a new feature does
not crosscut other language components. How-
ever, many language extensions (e.g., type check-
ing, code generation) required changes in many
if not in all language components. Clearly, such
language extensions are aspects that crosscut lan-
guage components. Therefore, in this case the lan-
guage modularization based on different aspects
would be more beneficial. To overcome this prob-
lem aspect-oriented techniques should be used in



language specifications.
Introduction of AOP in language development in-
creases modularity, readability and reuse of lan-
guage specifications. Different concepts are de-
fined separately and are therefore not part of orig-
inal language. With introduction of aspects, se-
mantics can be (depends on developer) detached
from syntax and can be therefore used in different
languages or/and in different productions.

2.1 Related Work

Aspect-oriented programming is a very promising
approach and have been successfully used in tools
for language definition and implementation. As-
pects has been used for many different tasks, such
as extension for weaving debugging information
into DSL specifications [14].
In this section we briefly describe three of the
more relevant contributions in the field,using as-
pects in language specification or implementation.
JastAdd [5] is a Java-based system for compiler
construction. JastAdd is centered around object-
oriented representation of the abstract syntax tree
(AST). It is a class weaver: it reads all the Jas-
tAdd modules and weaves the fields and methods
into the appropriate classes during the generation
of the AST classes. The idea of aspect-orientation
in JastAdd is to define each aspect of language in
separate class and then weave them together at ap-
propriate places (pointcuts). With separation of
different language aspects among different classes
developers have the possibility to use all features
of Java programming language to specify aspects.
The aspect-oriented language AspectG [1] was
created for modular implementation of crosscut-
ting concerns in ANTLR language definition.
Since ANTLR belongs to syntax directed transla-
tions (semantic rules are not declaratively speci-
fied and order of semantic rules is important) As-
pectG uses following model:

• join points are static points in language spec-
ifications where additional aspects can be
weaved,

• pointcuts specify join points and include not
only the syntax level of the grammar but also
the semantics associated with particular syn-
tax,

• advice are similar to AspectJ notion (before
and after) and brings together a pointcut (to
pick out join points) and a body of code (se-
mantic rules).

At last, AspectASF [7] is a simple aspect language
for language specifications written in ASF+SDF
formalism. Only rewrite rules are supported.
Therefore, join points in AspectASF are static
points in semantic equations. Aspects specify ad-
ditional equations which are written in ASF for-
malism and are appended to semantic equations
at appropriate places (join points). The aim of
aspects in AspectASF is to declaratively specify
which rules should be adapted to incorporate ad-
ditional semantics (e.g. side-effect, rule tracing,
etc.). To declare how/where these aspects will
be weaved into original specifications AspectASF
uses pointcut pattern language and advice which
are applied to specified pointcut.

3 Aspects in LISA

In the LISA project [11, 12], one of the main goals
was to enable incremental language development.
It was soon recognized that inheritance can be very
helpful since it is a language mechanism that al-
lows new definitions to be based on the existing
ones. A new specification can inherit the proper-
ties of its ancestors, and may introduce new prop-
erties that extend, modify or override its inherited
properties. In object-oriented languages the prop-
erties that consist of instance variables and meth-
ods are subject to modification. The correspond-
ing properties in language definitions based on at-
tribute grammars are:

• lexical regular definitions,

• attribute definitions,

• rules which are generalized syntax rules that
encapsulate semantic rules, and

• operations on semantic domains.

Therefore, regular definitions, production rules,
attributes, semantic rules and operations on se-
mantic domains can be inherited, specialized or
overridden from ancestor specifications. In this
approach the attribute grammar as a whole is sub-
ject to inheritance employing the “Attribute gram-
mar = Class” paradigm [13]. We call this multiple
attribute grammar inheritance. With our approach,
the language designer is able to add new features
(syntax constructs and/or semantics) to the lan-
guage in a simple manner by extending lexical,
syntax and semantic specifications.



3.1 AspectLISA

As already mentioned, object-oriented techniques
and concepts need to be combined with aspect-
oriented techniques to achieve better modularity,
extensibility and reusability. This issue is further
described in the following section.
LISA features like multiple attribute grammar in-
heritance, simplify language specifications and
contribute towards better reusability, modularity
and extensibility. However, there are still situ-
ations when new semantic aspects crosscut ba-
sic modular structure. In other words some se-
mantic rules need to be repeated in different pro-
ductions. To avoid this unpleasant situation, an
aspect-oriented attribute grammar has been incor-
porated into LISA language specifications. This
extension is called AspectLISA, which is LISA
extended with mechanism that enables to specify
where to apply additional semantic rules. These
points are known as join points in AOP. Join points
in AspectLISA are static points in language spec-
ifications where additional semantic rules can be
attached. These points can be syntactic production
rules or generalised LISA rules. The production
matching takes place on rules and also on produc-
tions which are members of production rules. One
pointcut can match rules/productions in different
languages over the entire hierarchy of languages.
For each pointcut we can define several advice
which are parameterized semantic rules written as
native Java assignment statements. In AOP several
different approaches of applying aspects to point-
cuts exists, like before, after and around [6]. In
AspectLISA there is only one way to apply advice
on a specific pointcut, since attribute grammars are
declarative and the order of equations in semantic
rules is not important. Therefore, applying advice
before/after a join point is not applicable.
The AspectLISA specification language, includ-
ing apect-oriented features, pointcuts and advice,
has following parts:

language L1 [extends L2, ..., LN ] {
lexicon {

[[Q] overrides | [Q] extends] R regular expr.

.

.

.
}
attributes type At 1, ..., At M

.

.

.
pointcut P< [S1, ..., S r ] > L.Y : LhsP ::= RhsP ;

.

.

.
advice [[B] extends | [B] overrides] A< [T1, ..., T r ] > on P {

semantic functions
}

.

.

.
rule [[Y] extends | [Y] overrides] Z {

X ::= X 11 X12 ... X 1p compute {
semantic functions }

.

.

.
|

Xr1 Xr2 ... X rt compute {
semantic functions }

;
}

.

.

.
method [[N] overrides | [N] extends] M {

operations on semantic domains
}
...

}

Let’s focus only on new aspect-oriented features
of LISA specification language which are point-
cuts and advice. As can be seen in formal As-
pectLISA language specifications, new features
are part of language specifications. Every LISA
specifications without new features can be used
and extended with aspect-oriented features.
Pointcuts are defined using reserved word
pointcut . Each pointcut has a unique name
and a list of parameters (terminals and non-
terminals used in semantic functions of advice).
As we already mentioned join points are static
points in language specifications where advice
can be applied. In the pointcut definition one can
use two wildcards. The wildcard ‘..’ matches zero
or more terminal or non terminal symbols and can
be used only to specify right-hand side matching
rules. The wildcard ‘∗’ is used to match parts
or whole literal representing a symbol. Some
examples of pointcut specifications are shown
below:

*.* : * ::= .. ;
matches any production in any rule in all languages across
current language hieararchy

nLPD.T* : * ::= .. ;
matches any production in all rules which start withT in
nLPD language

*.* : TIP* ::= .. *S ;

matches all productions in any rule whose left hand side

symbol satisfy pattern "TIP*" and the right-hand side’s last

symbol ends withS

Advice in AspectLISA are additional semantics
that can be appended at a specific join point. In
order to increase reusability, advice are parameter-
ized. Parameters can be terminal or non-terminal
symbols and are evaluated at weaving time. Ad-
vice are defined using the reserved wordadvice
and contains information about the pointcut where



advice will appear. An example of advice which
is attached to pointcutTest is shown below:

pointcut Test<N, T, V> nLPD1.T* : * ::= .. ;

advice Beg<N, T, V> on Test{
N.outProlog = V.outProlog;
T.inProlog = "";
V.inTableTypes = T.outTableTypes;
V.inProlog = T.outProlog;

}

In section 4 more examples of advice and point-
cuts are provided.

3.2 AOP in LISA and inheritance

As we already mentioned pointcuts and advice can
be reused using inheritance. All pointcuts of pre-
decessors can be used in all ancestors. Pointcuts
with same signature (name and parameters) as in
ancestors can be used but cannot be extended in
inherited languages and are overriden by default.
Advice inherited from ancestors usingextends
keyword must be merged with the advice in the
specific language. If advice exists in parent and
inherited language then semantic functions of ad-
vice must be merged, otherwise advice are simply
copied from inherited to current language. Ad-
vice can also override semantics of its parent using
keywordoverride . Overriden advice cannot by
weaved afterwards it has once been overriden.

4 Case Study

Typical examples of aspects in language specifica-
tions can be additional code generation, different
language extensions (e.g., exception handling, as-
pects, new paradigms), language specification de-
bugging, attribute tracking. In this section a small
example is presented on language callednLPD,
which has been used in teaching compilers at Uni-
versity of Minho.
This example will be used to show how we can
identify an aspect; the difference between an ex-
tension and an aspect; how to specify an aspect
using AspectLisa syntax and how to gather exten-
sions and aspects in order to develop a language
processor.
In nLPD all variables need to be declared af-
ter type declarations, where one must define the
length of the type (bytes occupied by variable of
the particular type). There are no pre-defined types
in nLPD. Variables are allocated in memory con-

tinually from address0.
The following tasks need to be computed:

1. Construct the type table.
2. Compute total memory space occupied by all

declared variables in program.
3. TranslatenLPD program into a set of Prolog-

facts.

In order to perform these three tasks, semantic
evaluations will be added to thenLPD grammar.
The language is divided into two main parts: type
definitions and variable definitions. So, the gram-
mar has a set of productions related with types and
another related with variables. For the first task
(type table construction) just the first part of the
grammar is used. An excerpt of LISA specifica-
tions for type table construction is:

language nLPD1
{

lexicon {
Number [0-9]+
Id [a-z]+
...

}
attributes Hashtable *.inTableTypes,

*.outTableTypes;

rule nLPD {
NLPD ::= TIPOS VARS compute {

// type table is stored in attribute outTableTypes
NLPD.outTableTypes = TIPOS.outTableTypes;
// initialize type table
TIPOS.inTableTypes = new Hashtable();

};
}
...
rule Type {

TIPO::= #Id #Number compute {
// store info about type name and type lenght into type table
TIPO.outTableTypes =

addItem(TIPO.inTableTypes, #Id.value(),
integer.valueOf(#Number.value()).intValue());

};
}

}

To compute total memory space previous specifi-
cations are extended because this second task is re-
lated with another part of the grammar (variables).
Note that only new semantic rules need to be spec-
ified. All others are inherited.

language nLPD2 extends nLPD1
{

rule extends nLPD {
NLPD ::= TIPOS VARS compute {

NLPD.outTotalMem = VARS.outTotalMem;
NLPD.outDecls = VARS.outDecls;
VARS.inDecls = new Vector();

};
}

...
rule Single {

SINGLE ::= IDS \: #Id compute {
IDS.inTableTypes = SINGLE.inTableTypes;
IDS.inDecls = SINGLE.inDecls;
SINGLE.outTotalMem = SINGLE.inTotalMem +

((IDS.outVars).size()) *
lookupLengthType(SINGLE.inTableTypes,#Id.value());

SINGLE.outDecls = IDS.outDecls;
};

}

rule Ids {
IDS ::= #Id RIDS compute {

RIDS.inVars= addElementVector(IDS.inTableTypes,



IDS.inVars,#Id.value());
RIDS.inTableTypes = IDS.inTableTypes;
RIDS.inDecls = addElementVector(IDS.inTableTypes,

IDS.inDecls,#Id.value());
IDS.outDecls = RIDS.outDecls;
};

}
...

}

To generate additional Prolog code, aspect-
oriented specifications are used. This third task
is performed using all the grammar productions.
There is no grammar extension just a new aspect
of the same productions will be specified. Imple-
menting this task as an aspect we have to define
a set of pointcuts and a set of advice in order to
add new attribute evaluation statements in gram-
mar productions.
language nLPD3 extends nLPD2 {

pointcut Begin<NLPD,TIPOS,VARS>
*.nLPD: NLPD::=TIPOS VARS;

...
pointcut Type<TIPO,#Id,#Number>

*.Type: TIPO::= #Id #Number ;
...
pointcut Sing<SINGLE,Ids,#Id>

*.Single: SINGLE ::= IDS \: #Id;
...
advice Init<N,T,V> on Begin{

N.outProlog = V.outProlog;
T.inProlog = "";
V.inTableTypes = T.outTableTypes;
V.inProlog = T.outProlog;

}
...
advice GenType<T,I,N> on Type {

T.outProlog = T.inProlog + "type(" + I.value() +
"," + N.value() + ")\n";

}
...
advice GenMem<S,I,Id> on Sing{

S.memAdressOut = S.memAdressIn +((I.outVars).size())*
lookupLengthType(S.inTableTypes,Id.value());

S.outProlog = S.inProlog +
writeVars(S.inTableTypes,I.outVars,

Id.value(),S.memAdressIn);
I.inVars = new Vector();

}
}

Therefore,nLPD3 implements an aspect using the
grammar specified bynLPD2 and this will allow
to perform the third proposed tasks.

5 Conclusion

The challenge in programming language defini-
tion is also to support reusability and extensibil-
ity: aspects will reinforce these features. Aspect-
oriented features of the AspectLISA tool increase
modularity since different concepts of program-
ming language can be designed and implemented
separately in different modules. These modules
are also more reusable due to inheritance, which
is successfully incorporated into our tool. In the
near future we will work out more and more com-
plex case studies in order to set up a method to
decide whether a new feature is an extension and

whether it is an aspect, clarifying when and how
to use aspects in language definitions instead of
the extension mechanism. We will also assess the
efficiency of our weaving algorithm and decide if
it deserves further improvement.
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Multiple Attribute Grammar Inheritance.Informatica,
24(3):319–328, September 2000.

[12] M. Mernik and V. Žumer. Incremental programming
language development.Computer Languages, Systems
and Structures, pages 1–16, 2005.

[13] J. Paakki. Attribute Grammar Paradigms - A High-
Level Methodology in Language Implementation.ACM
Computing Surveys, 27(2):196 – 255, 1995.

[14] H. Wu, J. Gray, S. Roychoudhury, and M. Mernik.
Weaving a debugging aspect into domain-specific lan-
guage grammars. InSAC ’05: Proceedings of the 2005
ACM symposium on Applied computing, pages 1370–
1374, New York, NY, USA, 2005. ACM Press.

[15] E. Van Wyk, O. de Moor, K. Backhouse, and
P. Kwiatkowski. Forwarding in attribute grammars for
modular language design. InProceedings of 11th Int.
Conf. Compiler Construction, pages 128–142, 2002.


