
AspectLISA: an aspect-oriented compiler
construction system based on attribute

grammars

Damijan Rebernak, Marjan Mernik 1,2

University of Maribor
Faculty of Electrical Engineering and Computer Science

Smetanova ul. 17, 2000 Maribor, Slovenia

Pedro Rangel Henriques 3

University of Minho
Department of Computer Science

Campus de Gualtar
4710 - 057 Braga, Portugal

Maria João Varanda Pereira 4

Polytechnic Institute of Bragança
Campus de Sta. Apolónia

Apartado 134 - 5301-857, Bragança, Portugal

Abstract

The use of object-oriented techniques and concepts, like encapsulation and inheritance,
greatly improves language specifications towards better modularity, reusability and extensi-
bility. Additional improvements can be achieved with aspect-oriented techniques since se-
mantic aspects also crosscut many language constructs. Indeed, aspect-oriented constructs
have been already added to some language specifications. The LISA compiler construc-
tion system follows an object-oriented approach and has already implemented mechanisms
for inheritance, modularity and extensibility. Adding aspects to LISA will lead to more
reusable language specifications. In the paper, aspect-oriented attribute grammars are in-
troduced, and the underlying ideas are incorporated into AspectLISA, an aspect-oriented
compiler generator based on attribute grammars.

Key words: Attribute grammars, aspect-oriented programming,
compiler generators.

c©2006 Published by Elsevier Science B. V.

Rebernak, Mernik, Henriques, Varanda

1 Introduction

The challenge in programming language definition is to support modularity and
abstraction in a manner that supports reusability and extensibility. A language de-
signer often wants to include new language features incrementally as the program-
ming language evolves. This is especially true in developing domain-specific lan-
guages (DSLs) which change more frequently than general-purpose programming
languages [17]. Ideally, a language designer would like to build a language simply
by reusing different language definition modules (e.g., language components), such
as modules for expressions, declarations, etc., regardless of the different formal
methods that may be used to specify such language components. This approach is
common in component-based programming [24] where components can be simply
plug-ins.

This cannot be done now, even if we restrict ourselves to just one of the for-
mal methods (abstract state machines, action semantics, algebraic specifications,
attribute grammars, denotational semantics, operational semantics, two-level gram-
mars, etc. [23]) since different compiler-compilers (automatic compiler generation
systems) use different and incompatible specification languages (e.g., despite the
fact that Eli [6] and FNC-2 [9] both rely on attribute grammars one can not ex-
change language definition modules written in the other system). Moreover, the
same is usually true even in the case of the same specification language since syn-
tax entities (e.g., non-terminals and terminals) and semantic entities (e.g., attributes
and semantic rules in the case of attribute grammars) are not constituents of the
hidden part of the module, nor are the parameters of language definition modules.
For example, when importing a module for expressions some non-terminals may
clash with existing non-hidden non-terminals producing undesirable effects. Such a
module can be parameterized using non-terminals as parameters to solve renaming
problems. However, modules with dozens of parameters are hard to use.

Compared to modern programming languages, such as object-oriented or func-
tional languages, language specifications of the 1980’s and early 1990’s were far
less advanced, specifically concerning provisions for abstraction, modularization,
extensibility and reusability. Recently, concepts from general programming lan-
guages have been successfully incorporated into language specifications. Among
them, object-oriented techniques are one of the most successful. Indeed, this had
several benefits on language specifications. To fully achieve modularity, extensi-
bility and reusability these techniques need to be combined with aspect-oriented
techniques because semantic aspects also crosscut many language constructs [19].
These observations have been taken into account in extending the LISA specifica-
tion language [18] with aspect-oriented features. The paper presents AspectLISA,

1 This work is sponsored by bilateral project BI–PT/04–06–008 ”Grammar Based Systems” be-
tween Slovenia and Portugal.
2 Email: {damijan.rebernak, marjan.mernik}@uni-mb.si
3 Email: prh@di.uminho.pt
4 Email: mjoao@ipb.pt

2

Rebernak, Mernik, Henriques, Varanda

which is an aspect-oriented compiler generator based on attribute grammars.
The paper is organized as follows. A brief introduction to aspect-oriented pro-

gramming is given in section 2 followed by related work presented in section 3.
The main part of the paper constitutes section 4 where AspectLISA is discussed. A
small case study illustrating ideas is given in section 5. The concluding comments
are mentioned in section 6.

2 Aspect-oriented programming

The major abstraction technique in software engineering is to divide the system
into functional components in such manner that changes to a particular component
do not propagate through the entire system [5,22]. However, some issues, called
aspects, are system wide and cannot be put into a single functional component.
As examples, failure handling, persistence, communication, coordination, mem-
ory management, are aspects of a system behavior that tend to crosscut groups of
functional components. As a consequence, functional components are tangled with
aspect code. This tangling problem makes functional components less reusable
and difficult to develop, understand, and evolve. A solution is provided by aspect-
oriented programming (AOP) [12] which is a programming technique for modu-
larizing concerns that crosscut the basic functionality of programs. In AOP, aspect
languages are used to describe properties which crosscut basic functionality in a
clean and a modular way. Despite that the main part of AOP research is devoted to
general-purpose languages [11,16] similar problems exists in domain-specific lan-
guages. For example, in language specifications modularization is usually based
on language syntax constructs, whereas the modularization based on different as-
pects (e.g. name analysis, type checking, code generation, etc.) would be more
beneficial. To overcome this problem aspect-oriented techniques can be used.

In order to achieve the desired properties of the system, we need an aspect
weaver that combines the component and the aspect language by weaving advice
at appropriate join points and may involve merging components, modifying and
optimizing them.

3 Aspects in language development

Aspect-oriented programming is a very promising approach and has been success-
fully used in tools for language definition and implementation [4,7,10,13,15,26,27].
In this context, aspects have been used for many different tasks (e.g., in [26] an ex-
tension for weaving debugging information into DSL specifications is reported). In
the rest of this section we describe in more detail some of the more relevant contri-
butions in the field, using aspects in language specification or implementation.

3

Rebernak, Mernik, Henriques, Varanda

3.1 JastAdd

JastAdd [7] is a Java-based system for compiler construction. JastAdd is cen-
tered around object-oriented representation of the abstract syntax tree (AST). Non-
terminals act as abstract super classes and productions act as specialized concrete
subclasses that specify the syntactic structure, attributes and semantic rules. All
these elements can be inherited, specialized, and overridden in subclasses. The
idea of aspect-orientation in JastAdd is to define each aspect of the language in a
separate class and then weave them together at appropriate places. The JastAdd
system is a class weaver: it reads all the JastAdd modules and weaves the fields
and methods into the appropriate classes during the generation of the AST classes.
With separation of different language aspects among different classes, developers
have the possibility to use all features of Java to specify aspects. In the follow-
ing example, taken from [7], two different aspects are described in separate classes.
The first one (typechecker.jadd) performs type checking for expressions and
computes the boolean field typeError. The unparser.jadd (second exam-
ple) implements an unparser which makes use of the field typeError to report
type-checking errors.
// typechecker.jadd
class Exp {
abstract void typeCheck(String expectedType);
}
class Add {

boolean typeError;
void typeCheck(String expectedType) {

getExp1().typeCheck("int");
getExp2().typeCheck("int");
typeError= expectedType != "int";

}
}

// unparser.jadd
import Display;
class Stmt {
abstract void unparse (Display d);

}
class Add {
void unparse (Display d) {

...
if (typeError)

d.showError("type mismatch");
}

}

Every field, method, import declaration is weaved to all generated AST classes, as
can be seen in following example.

class ASTAdd extends ASTExp {
// Access interface
ASTExp getExp1() { ... }
ASTExp getExp2() { ...}
// From typechecker.jadd
boolean typeError;
void typeCheck(String expectedType) {

getExp1().typeCheck("int");
getExp2().typeCheck("int");
typeError = expectedType != "int";

4

Rebernak, Mernik, Henriques, Varanda

}
// From unparser.jadd
void unparse(Display d) {

...
if (typeError)

d.showError("type mismatch");
...

}
}

As can be seen in the example above, this approach does not follow the conven-
tional AOP join point model (JPM) where join points are specified using a pointcut
pattern language. However, it can be seen as inter-type declarations in AspectJ [11]
where join points are all non-anonymous types in the program and pointcuts are the
names of classes or interfaces.

3.2 AspectG

To generate an additional language-based tool (e.g., debugger) new specifications
need to be added in several places in language specifications [8]. These new addi-
tions can be seen as aspects (e.g., debugging aspects). It was observed [26] that such
aspects crosscut basic language specifications. Hence, the aspect-oriented language
AspectG [2] was created for modular implementation of crosscutting concerns in
the ANTLR language definition [1]. Since ANTLR belongs to syntax directed
translations (semantic rules are not declaratively specified and order of semantic
rules is important) AspectG uses the following model:

• join points are static points in language specifications where additional aspects
can be weaved,

• pointcuts specify join points and include not only the syntax level of the grammar
but also the semantics associated with a particular syntax (see within and match
constructs in the example below),

• advice are similar to AspectJ notion (before and after) and brings together a
pointcut and a body of code.

An example of pointcut and advice in AspectG is shown below.
...
command
:(RIGHT

{
fileio.print("//move right");
fileio.print("x=x+1;");
fileio.print("time=time+1;");

}
...

pointcut count_gpllinenumber():
within(command.*) &&
match (fileio.print("x=x+1;"));

after(): count_gpllinenumber()
{gplbeginline=fileio.getLinenumber();
gplendline=fileio.getLinenumber();}

5

Rebernak, Mernik, Henriques, Varanda

The result of weaving is:
...
command
:(RIGHT

{
fileio.print("//move right");
fileio.print("x=x+1;");
gplbeginline=fileio.getLinenumber();
gplendline=fileio.getLinenumber();
fileio.print("time=time+1;");

}
...

3.3 AspectASF

AspectASF [13] is a simple aspect language for language specifications written in
the ASF+SDF [25] formalism. Only rewrite rules are supported. Therefore, join
points in AspectASF are static points in equation rules describing semantics of the
language. The pointcut pattern language in AspectASF is a very simple pattern
matching language on the structure of equations where only labels and left-hand
sides of equations can be matched. Pointcuts can be of two types: entering an
equation (after a succesfull match of left-hand side) and exiting an equation (just
before returning the right-hand side). Examples (all examples in this section are
taken from [13]) of pointcuts in AspectASF language are:

[_] matches all equations

[_] eval (_, _) matches all equations with outermost symbol eval

[_] eval (_, Env) matches all equations with 2nd arg an Env variable

[int*] _ or [real*] _ matches all equations with label int.. or real..

Advice code specify additional equations which are written in the ASF for-
malism. There are two types of advice: after entering an equation (concatenating
equations to the beginning of the list of equations that is matched by the pointcut)
and before exiting an equation (concatenating equations to the end of the list of
equations that is matched by the pointcut). An example of AspectASF is shown
below.
[1] Env’ := evs(Stat, Env),

Env’’ := evs(Stat*, Env’)
==============================
evs(Stat ; Stat*, Env) = Env’’

pointcut statementStep: entering [_] evs(Stat ; Stat*, Env)
after: statementStep tide-step(get-location(Stat))

After weaving takes place the aspects are weaved into the original language
specifications. In other words, additional equations are appended to appropriate
places.
[1] tide-step(get-location(Stat)),

Env’ := evs(Stat, Env),
Env’’ := evs(Stat*, Env’)
==============================
evs(Stat ; Stat*, Env) = Env’’

6

Rebernak, Mernik, Henriques, Varanda

4 AspectLISA

4.1 Introduction to LISA

In the LISA project [18,20], one of the main goals was to enable incremental lan-
guage development. It was soon recognized that inheritance can be very helpful
since it is a language mechanism that allows new definitions to be based on the
existing ones. A new specification can inherit the properties of its ancestors, and
may introduce new properties that extend, modify or defeat its inherited proper-
ties. In object-oriented languages the properties that consist of instance variables
and methods are subject to modification. The corresponding properties in language
definitions based on attribute grammars are:

• lexical regular definitions,
• attribute definitions,
• rules which are generalized syntax rules that encapsulate semantic rules, and
• operations on semantic domains.

Therefore, regular definitions, production rules, attributes, semantic rules and
operations on semantic domains can be inherited, specialized or overridden from
ancestor specifications. In this approach the attribute grammar as a whole is subject
to inheritance employing the “Attribute grammar = Class” paradigm [21].

A very simple language for moving a robot can illustrate our incremental lan-
guage development approach [20]. The language for robot movement is defined in
Fig. 1. The robot can move in different directions and the task is to compute its
final position. Over time, the language is extended with new features. For exam-
ple, we would like to know when the robot will reach the final position. The new
language (RobotTime) is specified as an extension of the Robot language (Fig.2).
This is a good example of how different aspects can be modularized in our ap-
proach. In the Robot language just the semantic rules for robot movement have
been described, while the RobotTime language contains just the semantic rules for
time calculation. The RobotTime language inherits regular definitions, syntax con-
structs and semantic rules from the Robot language and adds new semantic rules
for time calculation. Note that the same effect is obtained by implicit pointcuts in
aspect-oriented systems like JastAdd [7] (see section 3).

As already mentioned, object-oriented techniques and concepts need to be com-
bined with aspect-oriented techniques to achieve better modularity, extensibility
and reusability. This issue is further described in the following sections.

4.2 Aspect-oriented Attribute Grammars

Aspect-oriented attribute grammar (AspectAG) is an attribute grammar [14] ex-
tended with pointcut and advice specifications [12], AspectAG = (G, A, R, Pc,

Ad). Context-free grammar G = (N, T, S, P), set of attributes A, and set of seman-
tic rules R have the same standard meaning of attribute grammars, as for example
described in [18].

7

Rebernak, Mernik, Henriques, Varanda

language Robot {
lexicon {
Commands left | right | up | down
ReservedWord begin | end
ignore [\0x0D\0x0A\] // skip whitespaces

}

attributes Point *.inp, *.outp;

rule start {
START ::= begin COMMANDS end compute {

START.outp = COMMANDS.outp;
// robot position in the beginning
COMMANDS.inp = new Point(0, 0); };

}

rule moves {
COMMANDS ::= COMMAND COMMANDS compute {

COMMANDS[0].outp = COMMANDS[1].outp; // propagation of position
COMMAND.inp = COMMANDS[0].inp; // to sub-commands
COMMANDS[1].inp = COMMAND.outp; }

| epsilon compute {
COMMANDS.outp = COMMANDS.inp; };

}

rule move {
// each command changes one coordinate
COMMAND ::= left compute {

COMMAND.outp = new Point((COMMAND.inp).x-1,(COMMAND.inp).y); };
COMMAND ::= right compute {

COMMAND.outp = new Point((COMMAND.inp).x+1,(COMMAND.inp).y); };
COMMAND ::= up compute {

COMMAND.outp = new Point((COMMAND.inp).x,(COMMAND.inp).y+1); };
COMMAND ::= down compute {

COMMAND.outp = new Point((COMMAND.inp).x,(COMMAND.inp).y-1); };
}

}

Fig. 1. Robot Language using LISA

Pointcuts Pc is a set of pointcut productions, Pc = {pc1, ..., pcm}, where
pointcut production pci, 1 ≤ i ≤ m, has the following form:

pci < X1, ..., Xr > : LHS → RHS

In pointcut production pci special wildcard symbols (.., ∗) can be used. Wildcard
symbol ‘∗’ denotes a symbol or some part of its name and can be used in the LHS

and RHS. Wildcard symbol ‘..’ denotes zero or more symbols and can be used
only in the RHS. Symbols Xi, 1 ≤ i ≤ r, are symbols from LHS and RHS and
denote the public interface for advice. A pointcut production pci < X1, ..., Xr >:
LHS → RHS, selects a production p : X0 → X1...Xn ∈ P if X0 matches LHS

and X1 ... Xn match RHS. Let Pmi denote the set of productions selected by
pointcut production pci, Pmi = {pi|pi ∈ P and pi is matched by pci}. Matched
productions Pm selected by pointcuts Pc is then defined as Pm =

⋃
i=1..m Pmi,

Pm ⊆ P . To match productions Pm, additional semantic rules specified in advice
Ad are attached.

Ad is a set of advice, Ad = {ad1, ..., adl}, where advice adk, 1 ≤ k ≤ l, has

8

Rebernak, Mernik, Henriques, Varanda

language RobotTime extends Robot {

attributes double *.time;

rule extends start {
compute {

// initial position is inherited
START.time = COMMANDS.time; }

}

rule extends moves {
COMMANDS ::= COMMAND COMMANDS compute {

// total time is sum of times spent in sub-commands
COMMANDS[0].time = COMMAND.time + COMMANDS[1].time; }

| epsilon compute {
COMMANDS.time = 0; };

}

rule extends move { // each command spent 1 time step
COMMAND ::= left compute {

COMMAND.time = 1; };
COMMAND ::= right compute {

COMMAND.time = 1; };
COMMAND ::= up compute {

COMMAND.time = 1; };
COMMAND ::= down compute {

COMMAND.time = 1; };
}

} Fig. 2. RobotTime Language using LISA

the following form:

adk < S1, ..., Sr > on pci {Rsk}

Semantic rules Rsk has the following form:

Rsk = {Sj.a = f(y1, ..., yk)|a ∈ A(Sj), yi ∈ (A(S1)∪...∪A(Sr)), 1 ≤ i ≤ k}

Defining attributes attached to symbols Sj, 1 ≤ j ≤ r, are defined by semantic rules
in Rsk. Advice adk is applied on pointcut pci, which match productions Pmi. For
each match production pi ∈ Pmi, the actual set of semantic rules Raki is obtained
by replacing formal symbols Sj (specified in adk) by actual symbols Xj (specified
in pci) in Rsk. The set of semantic rules Ra obtained from advice Ad and pointcuts
Pc is defined as Ra =

⋃
k=1..l,i=1..m Raki and needs to be merged with ordinary

semantic rules Rpi, to obtain well defined attribute grammar AG = (G, A, R′) in
the following manner: Rp′

i = Rpi ∪ (
⋃

k=1..l Raki), R′ =
⋃

i=1..n Rp′i. Note that
(G, A, R, Pc, Ad) = (G, A, R′). Therefore, an aspect-oriented attribute grammar
is an attribute grammar where some semantic rules are not attached explicitly to
production rules but implicitly as advice into productions selected by pointcuts.
When semantic rules are merged, only one semantic rule for each defining attribute
must exist, otherwise the attribute grammar is not well defined [14]. The following
illustrates a simple example:

9

Rebernak, Mernik, Henriques, Varanda

Ordinary attribute grammar specifications:

p0: A → B C {A.x = B.x + C.x; B.y = 0; C.y = 1;} // Rp0

p1: B → a B {B0.x = B1.x; B1.y = B0.y + 1;} // Rp1

p2: B → ε {B.x = B.y;} // Rp2

p3: C → c {C.x = C.y + 2;} // Rp3

Pointcuts:

pc1 : B → .. // matches p1 and p2

pc2 <A, B> : A → B * // matches p0

Advice:

ad1 <X> on pc1 {X.z=1;} // Ra11 = {B.z=1;}

// Ra12 = {B.z=1;}

ad2 <Y, X> on pc2 {Y.w = X.z;} // Ra20 = {A.w = B.z;}

Final semantic rules:

Rp’0 = Rp0 ∪ Ra20 = {A.x = B.x + C.x; B.y = 0; C.y = 1; A.w = B.z;}

Rp’1 = Rp1 ∪ Ra11 = {B0.x = B1.x; B1.y = B0.y + 1; B.z = 1;}

Rp’2 = Rp2 ∪ Ra12 = {B.x = B.y; B.z = 1;}

Rp’3 = Rp3 = {C.x = C.y + 2;}

4.3 AspectLISA constructs

As seen from Fig. 1 and Fig. 2 LISA enables good modularity and extensibil-
ity of attribute grammar specifications. However, there are still situations when
new semantic aspects crosscut basic modular structure. In other words, some
semantic rules need to be repeated in different productions (e.g., semantic rule
COMMAND.time = 1; which has to be repeated several times in generalized
production move of RobotTime language). To avoid this unpleasant situation, an
aspect-oriented attribute grammar, as specified in subsection4.2, has been incorpo-
rated into LISA language specifications. This extension is called AspectLISA. Join
points in AspectLISA are static points in language specifications where additional
semantic rules can be attached. These points can be syntactic production rules or
generalised LISA rules. The production matching takes place on productions which
are members of generalized LISA rules. One pointcut can match productions in dif-
ferent languages over the entire hierarchy of languages. For each pointcut we can
define several advice which are parameterized semantic rules written as native Java
assignment statements. In AOP, several different approaches of applying aspects to
pointcuts exists, like before, after and around [11]. In AspectLISA there is only one
way to apply advice on a specific pointcut, since attribute grammars are declarative
and the order of equations in semantic rules is not important. Therefore, applying
advice before/after a join point is not applicable.

The AspectLISA specification language, including apect-oriented features, po-
intcuts and advice, has the following parts (note how pointcuts and advice defined
in section 4.2 are written in the LISA specification language):

10

Rebernak, Mernik, Henriques, Varanda

language L1 [extends L2, ..., LN] {
lexicon {

[[Q] overrides | [Q] extends] R regular expr.
...

}
attributes type At1, ..., AtM

...
pointcut P< [S1, ..., Sr] > L.Y : LhsP ::= RhsP ;

...
advice [[B] extends | [B] overrides] A< [T1, ..., Tr] > on P {

semantic functions
}

...
rule [[Y] extends | [Y] overrides] Z {

X ::= X11 X12 ... X1p compute {
semantic functions }

...
|

Xr1 Xr2 ... Xrt compute {
semantic functions }

;
}

...
method [[N] overrides | [N] extends] M {

operations on semantic domains
}
...

}

Symbols used in formal AspectLISA specifications above have following mean-
ing:

• L – language name,
• Q and R – regular expression name,
• At – attribute name,
• P – pointcut name,
• S – actual symbol,
• LhsP and RhsP – left and right-hand side of pointcut production,
• A – advice name,
• T – formal symbol,
• X – grammar symbol,
• Y and Z – grammar rules,
• N and M – method name.

This section focuses only on the new aspect-oriented features of the LISA spec-
ification language which are pointcuts and advice.

Pointcuts are defined using the reserved word pointcut. Each pointcut has
a unique name and a list of actual parameters (terminals and non-terminals used

11

Rebernak, Mernik, Henriques, Varanda

in semantic functions of advice). As we already mentioned, join points are static
points in language specifications where advice can be applied. In the pointcut defi-
nition one can use two wildcards. The wildcard ‘..’ matches zero or more terminal
or non-terminal symbols and can be used only to specify right-hand side matching
rules. The wildcard ‘∗’ is used to match parts or whole literal representing a sym-
bol. To illustrate the AspectLISA pointcut model, we present some examples of
pointcut specifications, defined over the Robot languages (Fig.1, Fig. 2).

. : * ::= .. matches any production in any rule in all lan-
guages across current languge hieararchy

RobotTime.m* : * ::= .. matches any production in all rules which start
with m in RobotTime language

. : COMM* ::= .. *D matches all productions in any rule whose left-
hand side symbol satisfy pattern ”COMM*” and
the right-hand side’s last symbol ends with D

Robot.move : COMMAND ::= left matches only a production COMMAND ::=
left in the rule move of Robot language

Advice in AspectLISA are additional semantics that can be appended at a spe-
cific join point. In order to increase reusability, advice are parameterized. Param-
eters can be terminal or non-terminal symbols and are evaluated at weaving time.
Advice are defined using the reserved word advice and contain information about
the pointcut where advice will appear. Below is an example of advice; more exam-
ples of advice and pointcuts are provided in section 5.

pointcut SimpleCommand<COMMAND> *.move : COMMAND ::= *;
advice SetTime<C> on SimpleCommand { C.time = 1;}

The result of weaving advice SetTime on pointcut SimpleCommand in the
RobotTime language is an additional semantic rule COMMAND.time = 1; in all
productions of rule Robot.move. The notation is much simpler as in Fig. 2.
The new aspect of the language, namely time calculation, is described at one place
(advice) and is not repeated in several productions.

4.4 AspectLISA inheritance

The AspectLISA specification language is an extension of LISA with two new
mechanisms (pointcuts and advice). Obviously, pointcuts and advice can also be
inherited from ancestor specifications. Formal definition of multiple attribute gram-
mar inheritance as described in [18] needs to be adopted. Due to lack of space in
this paper only the formal definition of inheritance of pointcuts and advice are
given. For theoretical background and further details readers are referred to [18].

Properties of aspect-oriented attribute grammars consist of lexical regular defi-
nitions, attribute definitions, rules which are generalized syntax rules that encapsu-
late semantic rules, pointcuts, advice and methods on semantic domains.

12

Rebernak, Mernik, Henriques, Varanda

Property = RegdefName + AttributeName + RuleName + PointcutName+
AdviceName + MethodName

For each pointcut pc in the language l, a Pointcuts(l)(pc) is a finite set of matching
productions P , that match to the pointcut pc, over the hierarchy of language l.

Pointcuts : Language → PointcutName → MatchingProductionRules

Pointcuts(l)(pc) = {pi | pi ∈ P, pi : Xi0 → Xi1Xi2...Xin, match(pi, pc)}

For each advice ad attached to pointcut pc in the language l, Advice(l)(ad)(pc) is
a finite set (ProdSem) of pairs (p, Rp), where p is a production and Rp is a union
of finite set of semantic rules associated with the production p, and semantic rules
(definedRp) defined by advice ad, where formal symbols of advice are replaced
by actual symbols defined in pointcut pc.

Advice : Language → AdviceName → PointcutName → ProdSem

Advice(l)(ad)(pc) = {(p, Rp)|p ∈ Pointcuts(l)(pc),
p : X0 → X1X2...Xn,

Rp = {Xi.a = f(X0.b, . . . , Xj.c)| Xi.a ∈ DefAttr(p)} ∪ definedRp(ad, pc)}

Multiple aspect-oriented attribute grammar inheritance is defined as follows.
Let AspectAG1, AspectAG2, . . . , AspectAGm be aspect-oriented attribute

grammars formally defined as:
AspectAG1 = (G1, A1, R1, P c1, Ad1),
AspectAG2 = (G2, A2, R2, P c2, Ad2),

...
AspectAGm = (Gm, Am, Rm, P cm, Adm), then

AspectAG = AspectAG2 ⊕ . . . ⊕ AspectAGm ⊕4AspectAG1 ,
where AspectAG1, which inherits from
AspectAG2, . . . , AspectAGm, is defined as:

AspectAG = (G, A, R, Pc, Ad), where

G = G2 ⊕ . . . ⊕ Gm ⊕4G1,

A = A1 	 . . . 	 Am,

R = R1 ⊗ . . . ⊗ Rm,

Pc = Pc1 	 . . . 	 Pcm,

Ad = Ad1 ⊗ . . . ⊗ Adm .

Therefore, inheritance on pointcuts is defined in a similar manner as for at-
tributes [18]. Pointcuts as well as attributes cannot be extended, but can be inher-
ited from ancestor attribute grammars. On the other hand, it is possible that some
pointcut is redefined in current specifications which override pointcut specified in
ancestor specifications. Inheritance on advice is defined in a similar manner as
for semantic rules R [18]. This should not be surprising, because advice are just
additional semantic rules which need to be weaved at appropriate join points.

13

Rebernak, Mernik, Henriques, Varanda

4.5 AspectLISA novelty

AspectLISA is first specification language based on attribute grammars that use an
explict pointcut model. Note that in JastAdd the pointcut model is implicit. The
poincut model in AspectG is more complicated because syntax as well as semantic
level are involved in the specification. This is due to using syntax directed transla-
tion instead of attribute grammars. AspectASF uses very simple pattern matching
language where only labels and left-hand sides of equations written in ASF formal-
ism can be matched. None of the existing systems enable inheritance on advice
and pointcuts. Moreover, advice in AspectLISA are parameterized on grammar
symbols and hence more reusable.

5 Using AspectLISA

Each LISA language specification is also a regular AspectLISA specification. In
section 3.3 the RobotTime language has been specified as an extension of the Robot
language using multiple attribute grammar inheritance. As can be noticed, semantic
rule (COMMAND.time=1;) has to be repeated in several productions (COMMAND
::= left, COMMAND ::= right, COMMAND ::= up, COMMAND ::=
down). New semantics in the RobotTime language can be seen as a new aspect
which crosscuts the language structure. Therefore, the RobotTime language can be
better specified using aspect-oriented attribute grammars. The RobotTime language
specifications written in AspectLISA are shown in Fig.3. Note that four pointcuts
have been specified which match all seven productions in the Robot language. For
example, pointcut Beginmatches production START ::= begin COMMANDS
end and pointcutSimpleCommandmatches productionsCOMMAND ::= left,
COMMAND ::= right, COMMAND ::= up, and COMMAND ::= down.
To each pointcut, advice is attached which define the new semantics of matched
productions (e.g., semantic for simple command is that each command spent one
time slot C.time = 1;).

In [20], the RobotSpeed language has been defined as an extension of the
RobotTime language. An additional speed construct has been added to the lan-
guage such that the robot can now move with different speed. The RobotSpeed lan-
guage can be specified purely with aspect-oriented techniques as shown in Fig.4.
Note that all pointcuts from the RobotTime language have been inherited. Only
new advice have to be defined with additional semantics about speed of the move-
ment. Hence, new advice extends previous advice that is inherited.

In Fig. 3 and Fig. 4 illustrative examples of AspectLISA are shown. The ap-
proach is scalable to larger languages and has been used in re-specifying the As-
pectCOOL language [3] which is an aspect-oriented extension of COOL (Class
Object-Oriented Language) 5 . Typical examples of aspects in language specifica-
tions can be additional code generation, different language extensions (e.g., excep-

5 Our COOL language should not be confused with the early domain-specific aspect-oriented
COOL language by Lopes.

14

Rebernak, Mernik, Henriques, Varanda

language RobotTime extends Robot {

attributes double *.time;

pointcut Begin<START, COMMANDS> *.start : START ::= .. COMMANDS .. ;
pointcut SimpleCommand<COMMAND> *.move : COMMAND ::= * ;
pointcut NoCommands<COMMANDS> *.moves : COMMANDS ::= epsilon ;
pointcut SeqCommands<COMMANDS[0], COMMAND, COMMANDS[1]>

*.moves : COMMANDS ::= COMMAND COMMANDS ;

advice Init<S,C> on Begin {
S.time = C.time;

}

advice SetTime<C> on SimpleCommand {
C.time=1;

}

advice ClearTime<Cs> on NoCommands {
Cs.time=0;

}

advice SumTime<C0, CM, C1> on SeqCommands {
C0.time = CM.time + C1.time;

}
}

Fig. 3. RobotTime Language using AspectLISA

tion handling, aspects, new paradigms), language specification debugging, attribute
tracking.

6 Conclusion

In the paper, aspect-oriented attribute grammars has been proposed and formally
defined. The concept has been incorporated into AspectLISA, an aspect-oriented
compiler generator based on attribute grammars. Aspect-oriented programming is
a very promising approach and has been successfully used in tools for language
definition and implementation. Some of the known contributions in this field were
reviewed, as a motivation for our proposal. LISA already has mechanisms to sup-
port inheritance and modularity. These mechanisms support nicely the notion of
object-oriented aspects; on the other side, adding aspects will allow to write simpler
specifications avoiding, for example, the repetition of semantic rules. The challenge
in programming language definition is also to support reusability and extensibility:
aspects will reinforce these features. Aspect-oriented features of the AspectLISA
tool increase modularity since different concepts of programming language can be
designed and implemented separately in different modules. These modules are also
more reusable due to inheritance, which is successfully incorporated into our tool.

7 Acknowledgements

We would like to thank Jeff Gray for useful comments on earlier versions and Mitja
Lenič for ideas and tips on implementation.

15

Rebernak, Mernik, Henriques, Varanda

language RobotSpeed extends RobotTime {
lexicon {
Commands speed
Number [0-9]+ }

attributes int *.inspeed, *.outspeed;

rule extends start {
compute {
}

}

rule speed {
COMMAND ::= speed #Number compute {

COMMAND.time = 0; // no time is spent for this command
COMMAND.outspeed = Integer.valueOf(#Number.value()).intValue();
// this command does not change the position
COMMAND.outp = COMMAND.inp;

};
}

advice extends Init<S,C> {
C.inspeed = 1; // beginning speed
S.outspeed = C.outspeed;

}

advice SpeedPropagation extends SumTime<C0, CM, C1> {
CM.inspeed = C0.inspeed; // speed propagation
C1.inspeed = CM.outspeed; // to sub-commands
C0.outspeed = C1.outspeed;

}

advice SameTime extends ClearTime<Cs> {
Cs.outspeed = Cs.inspeed;

}

advice CalculateTime extends SetTime<C> {
C.time = 1.0/C.inspeed;
C.outspeed = C.inspeed;

}
}

Fig. 4. RobotSpeed Language using AspectLISA

References

[1] ANTLR – ANother Tool for Language Recognition. http://www.antlr.org, 2006.

[2] AspectG. http://www.cis.uab.edu/wuh/ddf/index.html, 2006.

[3] E. Avdičaušević, M. Lenič M. Mernik, and V. Žumer. AspectCOOL: An experiment
in design and implementation of aspect-oriented language. ACM SIGPLAN Notices,
36(12):84–94, December 2001.

[4] O. de Moor, S. L. Peyton Jones, and E. Van Wyk. Aspect-oriented compilers. In
Generative and Component-Based Software Engineering (GCSE), pages 121–133,
1999.

[5] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[6] R.W. Gray, V.P. Heuring, S.P. Levi, A.M. Sloane, and W.M. Waite. Eli: A complete,
flexible compiler construction system. Communications of the ACM, 35(2):121–131,
1992.

16

Rebernak, Mernik, Henriques, Varanda

[7] G. Hedin and E. Magnusson. JastAdd: an aspect-oriented compiler construction
system. Science of Computer Programming, 47(1):37–58, 2003.

[8] P. Henriques, M. Varanda Pereira, M. Mernik, M. Lenič, J. Gray, and H. Wu.
Automatic generation of language-based tools using LISA. IEE Proceedings -
Software Engineering, 152(2):54–69, April 2005.

[9] M. Jourdan, D. Parigot, C. Julie, O. Durin, and C. Le Bellec. Design, implementation
and evaluation of FNC-2 attribute grammar system. In Proc. of the ACM Sigplan’90
Conference on Programming Language Design and Implementation, pages 209–222,
1990.

[10] K. Kalleberg and E. Visser. Combining aspect-oriented and strategic programming.
In N.M.-O. Horatiu Cirstea, editor, Proceedings of the 6th International Workshop of
Rule-Based Programming (RULE). ENTCS, Nara, Japan, Elsevier, April 2005.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. Getting
started with AspectJ. Communications of the ACM (Special issue on Aspect-Oriented
Programming), 44(10):59–65, October 2001.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In M. Aksit and S. Matsuoka, editors,
ECOOP97 Object-Oriented Programming, Lecture Notes in Computer Science,
volume 1241, pages 220–242. Springer-Verlag, 1997.

[13] P. Klint, T.van der Storm, and J.J. Vinju. Term rewriting meets aspect-oriented
programming. Technical report, Centrum voor Wiskunde en Informatica, 2004.

[14] D. E. Knuth. Semantics of context-free languages. Mathematical Systems Theory,
2(2):127–145, 1968.

[15] J. Kollár and M. Tóth. Temporal logic for pointcut definitions in AOP. Acta
Electrotechnica et Informatica, 5(2):15 – 22, 2005.

[16] D. Lohmann, G. Blaschke, and O. Spinczyk. Generic advice: On the combination of
AOP with generative programming in aspectC++. In GPCE, pages 55–74, 2004.

[17] M. Mernik, J. Heering, and A. Sloane. When and how to develop domain-specific
languages. ACM Computing Surveys, 37(4), 2005. To appear.

[18] M. Mernik, M. Lenič, E. Avdičaušević, and V. Žumer. Multiple Attribute Grammar
Inheritance. Informatica, 24(3):319–328, September 2000.

[19] M. Mernik, X. Wu, and B. Bryant. Object-oriented language specifications: Current
status and future trends. In ECOOP Workshop: Evolution and Reuse of Language
Specifications for DSLs (ERLS), 2004.

[20] M. Mernik and V. Žumer. Incremental programming language development.
Computer Languages, Systems and Structures, (31):1–16, 2005.

[21] J. Paakki. Attribute Grammar Paradigms - A High-Level Methodology in Language
Implementation. ACM Computing Surveys, 27(2):196 – 255, 1995.

17

Rebernak, Mernik, Henriques, Varanda

[22] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–1058, December 1972.

[23] K. Slonneger and B. L. Kurtz. Formal Syntax and Semantics of Programming
Languages. Addison-Wesley, 1995.

[24] C. A. Szyperski. Component Software – Beyond Object-Oriented Programming.
Addison Wesley, Second edition, 2002.

[25] M. G. J. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser,
and J. Visser. The Asf + Sdf meta-environment: A component-based language
development environment. Lecture Notes in Computer Science, 2027:365–370, 2001.

[26] H. Wu, J. Gray, S. Roychoudhury, and M. Mernik. Weaving a debugging aspect into
domain-specific language grammars. In SAC ’05: Proceedings of the 2005 ACM
symposium on Applied computing, pages 1370–1374, New York, NY, USA, 2005.
ACM Press.

[27] E. Van Wyk. Aspects as modular language extensions. Electronic Notes in Theoretical
Computer Science, 82(3), 2003.

18

	Introduction
	Aspect-oriented programming
	Aspects in language development
	JastAdd
	AspectG
	AspectASF

	AspectLISA
	Introduction to LISA
	Aspect-oriented Attribute Grammars
	AspectLISA constructs
	AspectLISA inheritance
	AspectLISA novelty

	Using AspectLISA
	Conclusion
	Acknowledgements
	References

