
Web Service for designing and implementing formal
languages

Damijan Rebernak, Matej Črepinšek, Marjan Mernik
University of Maribor, Faculty of Electrical Engineering and Computer Science

Smetanova ulica 17, 2000 Maribor, Slovenia
{damijan.rebernak, matej.crepinsek, marjan.mernik}@uni-mb.si

tel: ++386-2-220-7462 fax: ++386-2-2511-178

Abstract. An intelligent web service and its
interface for designing and implementing formal
languages is described in the paper. The paper
describes also background tools LISA and GIE
used in the web service and some basics of their
usage. Three language design approaches are
presented. Firstly, from scratch using LISA spec-
ifications, secondly using stored specifications
from other developers, and thirdly with a set of
positive and negative example strings/programs.
Advanced user interface with shared and docu-
mented repository of solutions make web service
suitable for beginners as well as compiler experts.
Web service has been designed in a way which
makes it suitable for integration in standalone
applications.

Keywords. Attribute grammars, com-
piler/interpreter generator, language design,
grammar inference

1 Introduction

Despite the fact that compiler construction (par-
ticularly parsing) is one of the most understood
branches of computer science, language design
and its implementation is still considered a very
difficult task. We believe that one of the most
difficult tasks in designing a language is writ-
ing its semantics/grammar, to make language for-
mal. Grammars are already being used in many
disciplines: in computer science (for compiler
construction, database interfaces, artificial intelli-
gence, etc.), in linguistics (for text analysis, ma-
chine translation), document preparation, etc. We
also noticed that grammars are suitable for many
other applications which are not closely related to
their originating area - language description and
implementation. We call such systems grammar-

based systems (GBSs) [6]. Necessity for that kind
of knowledge is present in almost every industry
and academic branch. To increase the overall ef-
ficiency of language development many tools for
automatic language generation from formal spec-
ifications have been developed. Tools like Yacc,
Lex [5], ASF+SDF [12], and LISA [8] can de-
crease development time dramatically, but are still
relatively difficult to use. The main drawback of
these tools is their inappropriateness for users that
are not language design experts.
In the paper the interface for our web service
for designing and implementing formal languages
(grammar/scanner/parser/evaluator) is presented.
The intelligent web service (web interface avail-
able at – http://www.cs.feri.uni-mb.si) is composed
of two different software components. The first
is LISA [8] (Language Implementation System
based on Attribute grammars)1 and the second
is GIE2 [2] (Grammar Inference Engine)3. Why
do we need yet another compiler generator tool?
Our web service is not an ordinary tool for de-
signing languages. A grammar (compiler or just
scanner/parser) can be designed and generated in
three ways. We can design it from scratch us-
ing LISA specifications. The other possibility is
to browse the repository of already implemented
grammars by other developers and extend them
using multiple attribute grammar inheritance [7]
to get the desired solution. The third option is
to start with examples (positive and negative) of
source strings/programs. Web service will then
guide the developer through the process of gen-

1http://marx.uni-mb.si:8080/LisaWebService/services/
CServiceBean?wsdl

2This work is sponsored by bilateral project BI-US/03-
04/5 "GenParse: Generating a Parser from Examples" be-
tween Slovenia and USA.

3http://marx.uni-mb.si:8080/GIEWebModule/services/
GIEWebServiceBean?wsdl



erating a parser from a set of positive and negative
examples using grammatical inference. The gen-
erated parser can be used as a standalone unit or
can be transformed into LISA specifications and
then further extended with semantic rules.
The web service is appropriate both for beginners
as well as experts. Beginners can use repository of
example specifications to start designing their own
language. Experts can use web service functional-
ities in their own applications.
The organization of the paper is as follows. Sec-
tion 2 gives a short overview of web service back-
ground tools LISA and GIE. In section 3 we
present the core of web service including all its
features. Finally, the concluding remarks and
some ideas for additional work are presented in
section 4.

2 Background Tools

As already mentioned in the introductory part, the
web service is based upon two different tools –
LISA and GIE. A short overview of those tools
is presented in the following two subsections. De-
tailed information can be found in [1, 2, 8].

2.1 Lisa ver. 2.0

The LISA tool is an interactive environment
for the development of programming languages
[8]. LISA takes formal attribute grammar-based
specifications as input and produces a com-
piler/interpreter for a programming language de-
fined by those specifications. The generated com-
piler is a source Java file. The specification of a
toy language SELA (Simple Expression Language
with Assignments) is given below, in order to illus-
trate the LISA style.

language SELA {
lexicon {

Number [0-9]+
Identifier [a-z]+
Operator \+ | :=
ignore [\0x09\0x0A\0x0D\ ]+

}

attributes Hashtable *.inEnv, *.outEnv;
int *.val;

rule Start {
START ::= STMTS compute {

STMTS.inEnv = new Hashtable();
START.outEnv = STMTS.outEnv;

};
}

rule Statements {
STMTS ::= STMT STMTS compute {

STMT.inEnv = STMTS[0].inEnv;
STMTS[1].inEnv = STMT.outEnv;
STMTS[0].outEnv = STMTS[1].outEnv;

} | STMT compute {
STMT.inEnv = STMTS[0].inEnv;
STMTS[0].outEnv = STMT.outEnv;

};
}
rule Statement {
STMT ::= #Identifier \:= EXPR compute {

EXPR.inEnv = STMT.inEnv;
STMT.outEnv = put(STMT.inEnv,
#Identifier.value(), EXPR.val);

};
}
rule Expression {
EXPR ::= EXPR + EXPR compute {

EXPR[2].inEnv = EXPR[0].inEnv;
EXPR[1].inEnv = EXPR[0].inEnv;
EXPR[0].val = EXPR[1].val+
EXPR[2].val;

};
}
rule Term1 {
EXPR ::= #Number compute {

EXPR.val = Integer.valueOf(
#Number.value()).intValue();

};
}
rule Term2 {
EXPR ::= #Identifier compute {

EXPR.val = ((Integer)EXPR.inEnv.get(
#Identifier.value())).intValue();

};
}

}

As can be observed from the presented exam-
ple, the specifications of a programming lan-
guage in LISA consist of lexical (regular def-
initions), syntactical (production rules – BNF
form) and attribute grammar semantic specifica-
tions. LISA supports component–oriented incre-
mental language development based on multiple
attribute grammar inheritance [7]. Attribute gram-
mar inheritance is a very effective language de-
sign mechanism as it allows new definitions to be
built upon existing ones. A new specification in-
herits the properties (regular definitions, attributes,
production rules and semantic rules) of its ances-
tors and may introduce new properties that extend,
modify or override its inherited properties.
LISA also generates other tools, such as language
knowledgeable editors and various inspectors such
as finite state automata visualizator and syntax and
semantic tree animators that are useful for under-
standing the behavior of the generated language.

2.2 Learning grammar from examples
(GIE – tool)

Using tools like LISA simplifies work with gram-
mars, but it is still a very complex and long–term
process for domain experts to build a program-
ming language. They usually know their inputs
and outputs very precisely, but describing that data
formally is difficult for them. Idea of a system
that will find structure description from examples
arises. The best way to accomplish this is by using
techniques from grammatical inference (grammar
induction or language learning).



2.2.1 Grammatical Inference

Grammatical inference, a subarea of machine
learning, is a process of learning grammars from
training sets. One of the most important theo-
retical aspects in this field is Gold’s theorem [3]
which states that it is impossible to identify any of
the four classes of grammars in the Chomsky hier-
archy when using only positive examples. Using
both negative and positive examples, the Chom-
sky hierarchy of grammars can be identified. Us-
ing only positive examples results in an uncer-
tainty as to when the generalization steps should
be stopped. This implies the need for some re-
strictions or background knowledge on the gen-
eralization process. Despite the disappointing re-
sults, research has continued in this area. Learn-
ing algorithms have been developed that exploit
knowledge of negative examples, structural infor-
mation, and are capable of restricting grammars
to some subclasses (e.g. even linear grammars,
k-bounded grammars, structurally reversible lan-
guages, terminal distinguishable context-free lan-
guages, etc.) [4] in which the identification is
achievable from merely positive examples. So
far, grammar inference has been mainly success-
ful in inferring regular languages. Researchers
have developed various algorithms (e.g., RPNI -
Regular Positive and Negative Inference algorithm
[9]) which can learn regular languages from pos-
itive and negative examples. Learning context-
free grammars (CFG) is more difficult than learn-
ing regular grammars. Using representative pos-
itive examples (that is, positive examples which
put into effect every production rule in the gram-
mar) along with negative examples did not result
in the same level of success as with regular gram-
mar inference. To be more successful, researchers
used additional knowledge to assist in the induc-
tion process. They used a set of skeleton deriva-
tion trees (unlabeled derivation trees) [10], par-
tially structured sentences [11], evolutionary pro-
cess with initial population of heuristically build
grammars, specialized genetic operations in evo-
lutionary process, etc. Despite the fact that many
researchers have looked into the problem of CFG
induction, it remains a challenge in grammatical
inference. One of the latest successful attempts
to infer DSL grammars is the GIE tool, which will
be described and modified for the web service pre-
sented in this paper.

2.2.2 GIE tool

GIE is an interactive tool for grammatical infer-
ence of context-free grammars. Its general idea is
to search all possible labelled derivation trees for
the selected example. This process consists of two
steps. The first is to build an unlabeled tree and
the second is to label it. When the tree is labeled
we can obtain grammar from it (Figure 1).

NT1

#int#int #plus

NT1

NT1 ::= NT1 #int
NT1 ::= #int #plus

Figure 1: Extracted grammar from labeled tree

From obtained grammar we can then build a parser
and test it on other examples. If the parser recog-
nizes all positive examples as true, and rejects all
negative examples, the grammar inference process
was successful. However, to fully accomplish the
inference process, we also need the following:

• Structurally complete positive examples; it is
not possible to infer a production in a gram-
mar if the positive example does not evidence
it.

• Pool of negative examples needs to be com-
plete; it is possible that inferred grammar is
too general for specific application domain.

Process of inferring a grammar with the GIE is in-
teractive and adaptive (Figure 2). To use the tool a
user needs to follow five steps.

Figure 2: Interactive adaptive process of inferring
a grammar

The first step is to write a list of positive and neg-
ative examples, collect regular expressions for ba-
sic symbols of searched grammar (number, word,



etc.), select the most complex positive example,
and determine a stop criteria (usually this is a case
when the parser recognizes all positive examples
and reject all negative examples). The second step
is to begin the process of inferring a grammar.
The process stops at the first grammar that satis-
fies the stop criteria. There is an additional op-
tion to find all grammars that satisfy the stop cri-
teria. The third step is to validate the grammar.
This step needs some domain expert knowledge.
To validate the grammar the user must be familiar
with the grammar form. To simplify this step the
GIE may generate examples from inferred gram-
mar. This enables experts to check all generated
examples and put wrong ones in a list of negative
examples. The final step is to rerun the process un-
til the searched grammar is found. The main con-
straint of GIE is time consumption which is expo-
nential with structurally complete example of the
searched language. GIE is working well on rela-
tively small languages like robot, nesting blocks,
DESK, etc. [2].

3 Web Service

During studying various approaches for the devel-
opment of domain specific languages, we discov-
ered many unsolved problems. Even though com-
piler construction is a well understood discipline,
language design and implementation remains a de-
manding and unpopular task. The latter is par-
ticularly important because many of domain spe-
cific languages are being used in areas other than
computer science [6]. Tools for automatic gen-
eration of parsers and compilers such as YACC,
Lex, ASF+SDF, and LISA can greatly simplify
and speedup the entire process of language devel-
opment. Despite the abundance of such tools the
general opinion of domain specific language de-
velopers remains the same – negative. To over-
come these drawbacks we developed an intelligent
web service for automatic generation of compilers.
At the core of the web service lies LISA and GIE
system. LISA itself is a very complex tool which,
in addition to compiler generation, offers many ad-
vanced features not suitable for non–expert users.
The developed web service brings these features to
beginners through its intuitive user interface. Dur-
ing the design phase of web service the following
was taken into consideration:

• A more simplified usage of compiler gener-

ator than with classical compiler generator
tools (there is no need for installation and
deeper knowledge of the tool).

• The development of programming language
specification should be more straightforward.

• The need for a central repository for storing
programming language specifications and an
interface for searching those specfications.

• The possibility of developing a parser from
sets of positive and negative program exam-
ples.

There are of course certain limitations to the web
service, such as:

• The majority of visualization tools are not
available through the web service.

• Transferring large amounts of data via net-
work connections.

The main functionality of the web service is to
generate a compiler from user defined formal pro-
gramming language specifications. The gener-
ated compiler includes lexical analyzer (scanner),
parser, and evaluator. Special consideration has
been put into the development of user interface.
The idea of user interface was to guide the user
through the entire development process of a pro-
gramming language. The basic development pro-
cess is very similar to that in LISA:

• Writing specifications from scratch or im-
porting them remotely (Figure 3).

• Generating scanner, parser, evaluator, and
compiler. The result of this step are source
Java files and their compiled versions.

• Error reporting at all levels.

• Downloading of generated components to
user.

• Testing the generated compiler (compiling
programs written in a new language).

• Executing the programs and inspecting the
results.

To alleviate the task of language development even
further we provided a central repository for stor-
ing specifications and then reusing them in other



Figure 3: Web Service input form

languages. The language developer can inspect
repository for specifications before he/she starts
writing language specifications from scratch. Be-
fore storing them to the repository the specifica-
tions need to be thoroughly documented and clas-
sified into appropriate domain. Domains can be
freely maintained by web service users. Each do-
main is represented with the following attributes:
domain name, detailed description and purpose
of languages in this domain, and representative
words of domain description (keywords). After
choosing the appropriate domain, specifications
can be added to the repository. Before storing
them into a specific domain specifications must
be well documented. The documentation includes
detailed description, keywords and author infor-
mation. Specifications can also include exam-
ple programs. Existing programming languages
stored in a repository can be reused due to the fact
that the LISA subsystem and the web service itself
use multiple attribute grammar inheritance [7].
The repository of specfications can be browsed
to find the appropriate solution in one of its do-
mains. Specifications are divided into different
domains, depending on the nature of programming
language. Another way to search for specifications
is to use the built–in web service search engine.
Search can be performed using the following cri-
teria:

• Domain.

• Keywords.

• Description (developer’s comments) of pro-

gramming language.

• Username (developer’s user name).

The search can include all search terms or just spe-
cific ones.
The described functionalities greatly simplify the
use of a compiler generator but still do not offer
sufficient support to unexperienced users. Many
times we have example programs which we want
to test for syntactic correctness. For this purpose
we need a parser. A standard procedure for de-
veloping a programming language is to build a
scanner/parser from specifications. The alterna-
tive way is to build a scanner/parser from a set of
example programs (positive – P+ and negative –
P−). Therefore, we developed an interface which
is, with the help of GIE, capable of guiding a user
through the process of generating a parser from
positive and negative example programs. Generat-
ing a parser from examples consists of the follow-
ing steps:

• Importing negative and positive program ex-
amples set.

• Generating a parser from input.

– Chooosing parameters (suggestions
from the web service).

– Reviewing results and further tuning.

• Downloading the generated components.

• Testing the generated components.

Web service usage is depicted in figure 4.

Figure 4: Web Service Usage



4 Conclusion and future work

We presented an intelligent web service for the de-
velopment of programming languages. The web
service is based upon LISA and GIE tools for au-
tomatic generation of compilers. To overcome the
limitations and drawbacks of those tools we de-
signed an intelligent user interface which greatly
simplifies the entire developmental process of pro-
gramming languages. The web service has been
designed to be sufficiently useful for beginners
as well as experts. Special interest has been put
into integrating the GIE component for generating
parsers from example programs with our web ser-
vice. The GIE is undoubtedly the most intelligent
part of the web service.
We noticed several challenges for future work on
our web service. The main feature of the web ser-
vice still required is robustness. Improvement of
user interface is also among the things to be done.
In particular we wish to improve the intelligence
of the interface as it is the key to user friendliness.
The interface will be extended with a component
which will enable programming language devel-
opment in a visual manner. A forum for develop-
ers is also planned.
Despite that fact that many issues still need to be
addressed we believe our web service became an
important contribution to the compiler generating
tools.

5 Acknowledgements

We would like to thank Mitja Lenič for his tremen-
dous contribution to the LISA component of the
web service.

References

[1] M. Črepinšek, M. Mernik, F. Javed, B. Bryant,
and A. Sprague. Extracting grammar from pro-
grams: Evolutionary approach. ACM Sigplan,
40:39–46, 2005.

[2] M. Črepinšek, M. Mernik, and V. Žumer. Ex-
tracting grammar from programs: Brute force ap-
proach. ACM Sigplan Notices, 40:29–38, 2005.

[3] E. M. Gold. Language identification in the limit.
Information and Control, 10:447–474, 1967.

[4] L. Lee. Learning of context-free languages: a sur-
vey of the literature. Technical Report TR-12-96,
Center for Research in Computing Technology,
Harvard University, Cambridge, MA, 1996.

[5] J. R. Levine, T. Mason, and D. Brown. Lex and
Yacc. Nutshell Handbook. O’Reilly and Asso-
ciates, Sebastopol, California, U.S.A., 2nd edi-
tion, 1992.

[6] M. Mernik, M. Črepinšek, T. Kosar, D. Rebernak,
and V. Žumer. Grammar-based systems: Defini-
tion and examples. Informatica, 28(3):245–254,
2004.

[7] M. Mernik, M. Lenič, E. Avdičaušević, and
V. Žumer. Multiple Attribute Grammar Inher-
itance. Informatica, 24(3):319–328, September
2000.

[8] M. Mernik, M. Lenič, E. Avdičaušević, and
V. Žumer. LISA: An Interactive Environment
for Programming Language Development. In
Nigel Horspool, editor, 11th International Con-
ference on Compiler Construction, volume 2304,
pages 1–4. Lecture Notes in Computer Science,
Springer-Verlag, 2002.

[9] J. Oncina and P. Garcia. Inferring regular lan-
guages in polynomial update time. In N. Pérez
de la Blanca, A. Sanfeliu, and E. Vidal, edi-
tors, Pattern Recognition and Image Analysis,
volume 1 of Series in Machine Perception and
Artificial Intelligence, pages 49–61. World Scien-
tific, Singapore, 1992.

[10] Y. Sakakibara. Efficient learning of context-free
grammars from positive structural examples. In-
formation and Computation, 97(1):23–60, March
1992.

[11] Y. Sakakibara and H. Muramatsu. Learning
context-free grammars from partially structured
examples. In Grammatical Inference: Algorithms
and Applications, 5th International Colloquium,
ICGI 2000, Lisbon, Portugal, September 11 -
13, 2000; Proceedings, volume 1891 of Lecture
Notes in Artificial Intelligence, pages 229–240.
Springer, 2000.

[12] M. G. J. van den Brand, A. van Deursen, J. Heer-
ing, H. A. de Jong, M. de Jonge, T. Kuipers,
P. Klint, L. Moonen, P. A. Olivier, J. Scheerder,
J. J. Vinju, E. Visser, and J. Visser. The ASF +

SDF meta-environment: A component-based lan-
guage development environment. Lecture Notes
in Computer Science, 2027:365–370, 2001.


