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Abstract: An approzimation algorithm for solving the asymmetric travel-
ing salesman problem based on Arbitrary Insertion Algorithm is tested on all
asymmetric instances from the TSPLIB. Surprisingly, the algorithm performs
remarkably well both in terms of solution quality and computation time.
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Sommario: Si effettuano test su un algoritmo approssimato per il TSP asim-
metrico, usando tutli gli esempi di TSP asitmmetrico presenti nella TSPLIB.
Sorprendentemente, l'algoritmo ha prestazioni rimarchevoli sia per la qualita
della soluzione che per il tempo di calcolo.
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1. Introduction

The traveling-salesman problem (TSP) is one of the most studied
problems in combinatorial optimization [8], [6]. The TSP is simply
stated, has practical applications, and is a representative of a large class
of important scientific and engineering problems. There is given a list
of n cities and distances between them; in which order should the cities
be visited so that the tour is as short as possible? Each city should be
visited once before returning to the starting point.

The TSP can be viewed as a graph-theory problem if the cities are
identified with the vertices of a graph, and the links between the cities are
associated with arcs. A weight corresponding to the inter—city distance
is assigned to each arc. The TSP is equivalent to finding a minimal
weighted Hamiltonian circuit in the complete graph K. However, in
its usual physical interpretation, where the vertices of a graph are cities
and edges represent roads interconnecting them, the graph is most likely
not complete. To remedy this situation, graph is usually completed by
adding arcs with the cost of the shortest path in the original graph.

An instance of the TSP is given by distance matrix D = (d;;) of
dimension n x n; where d;; represents the weight of the arc from city i
to city j in N = {1,...,n}. If dij = dj; for every pair 7 and j in N then
the TSP is symmetric, otherwise it is asymmetric (ATSP).

TSP is an example of a NP-hard problem. It is therefore reasonable
to design approximate algorithms which find near-optimal solutions. Ac-
cording to [1], several hundreds of papers were published on TSP and
probably every approach for attacking NP-hard optimization problems
has also been tested or has even been formulated for TSP.

Recently, very good results were obtained with an exact algorithm
for ATSP on a class of random instances [7]. Studies of the asymmetric
traveling salesman polytope give hope to solve large instances of ATSP in
general (see, for example [2] or [3]. The exact algorithms tend to be very
time consuming, because their time complexity is superpolynomial. An
alternative, perhaps more practical approach, is to design approximate
algorithms which give solutions of reasonable quality in a short time.
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In this paper we study a randomized approximate algorithm for ATSP.
Our heuristics is based on the well-known arbitrary insertion procedure
[10]. This algorithm was not payed too much attention, maybe because
of the known worst case performance [10], [4].* However, because of our
relatively good experience with insertion-and—optimization approach on
PTSP [9], a probabilistic generalization of TSP [5], we started our ex-
periment, in which we have repeatedly run the arbitrary insertion based
procedure followed by a local optimization phase. Interestingly, we got
surprisingly good results within short computation times. In this note
we give the results of tests of our algorithm on all ATSP instances of the
TSPLIB library [8], which were available at the time of the experiment.

The rest of the paper is organized as follows. In the next section our
heuristic is described. Computation results and conclusions are given in
the last section.

2. The Heuristic

The main idea of our heuristic is based on the arbitrary insertion
algorithm [10], a relaxation of the cheapest insertion algorithm. The
solutions are further improved by a local optimization phase.

Algorithm RAI (Randomized Arbitrary Insertion):

1 Start with a tour consisting of a given vertex and self-loop.
2 Randomly choose a vertex not on the tour.
3 Insert this vertex between neighboring vertex on the tour in the

cheapest possible way. If the tour is still incomplete, go to step
P .

4 Keep this tour solution, say S.
5 Repeat n2-times steps 6 through 10.

* In the worst case, the arbitrary insertion on ATSP can give solutions with
costs as much as n times the optimal [4], while for the symmetric case the

solution is always better than two times the optimum [10].
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6 Randomly choose i and j (i, j € N = {Loinaa i} i S HSE S n).
7 From the circuit with all vertices remove a path beginning with vertex
i through vertex j, and connect vertex i — 1 with vertex j + 1.
8 Randomly choose a vertex from the removed path.
9 Insert this vertex between two neighboring vertices on the tour in the
cheapest possible way. If the tour is still incomplete go to step 8.
10 Compare current solution with the solution S. Keep the better one.

First four steps generate an initial circuit. In the main loop — steps
6 through 10 an optimization is performed. Some vertices are removed
from the circuit and later they are randomly reinserted into the circuit (
once more in the cheapest possible way.

There is an interesting question on how many times the optimization
should be performed (step 5). We repeated it n?-times. We have no
theoretical arguments for this choice; it turned out to give good results
in reasonably short time. In each iteration, the number of deleted and
reinserted vertices is at most n and for each insertion of a vertex at
most n different insertion positions are compared. The worst case time

complexity of our algorithm is thus O(n*).

3. Computational Results

Since we needed optimal solution value for evaluation of the results,
we tested the algorithm on all ATSP instances from TSPLIB library
[8]. The results obtained in our experiments are shown in Table 1. The 4
second and the third column indicate the name of ATSP instance and
the number of cities, respectively. The optimal tours are known for all of
problem instances and their costs are shown in the fourth column. For
each of the problem instances, 50 independent runs were performed.

In Table [1] there is another measure of complexity, the number of
insertions. Recall that in each run n? tours are generated. In the next
column the average time (in seconds) of 50 independent runs is shown
(PC-i586, 166MHz, Linux). In the last two columns the shortest and

|

-y

J. Brest et al. - An Approzimation Algorithm for the Asymmetric TSP 63

| Problem | n | Optimum | #Inserts [ {[s] | min % | avg %
; f1')r13'? 17 39 400 0.007 39 100.00 39.00 100.00
g f:vg? .-34 1286 Ll 0.098 | 1286 100.00 | 1291.38 100.42
;‘ f|:£3; ;g };;g 2553 0.508 | 1473 100.00 | 1482.12 100.62
! .43 o by 3142 0.674 | 1530 100.00 | 1539.94 100.65
! f{;w;d o 4046 0.997 | 5620 100.00 | 5620.76 100.01
: i b 1613 4550 1.198 | 1613 100.00 | 1638.16 101.56
j v47 48 1776 5400 1.536 | 1776 100.00 | 1780.00 100.23
A r;ftfl%p 118 14422 5520 1.598 | 14422 100.00 | 14512.50 100.63
I.U i a” 53 6905 6724 2.398 | 6905 100.00 | 6941.12 100.52
vHb 56 1608 7845 2.878 | 1608 100.00 | 1621.16 100.82
i; f;\;604 65 1839 11348 5.241 1839 100.00 | 1858.12 IDIjD‘}
i ftt\,?g :::(I) 3186.73 13568 7.068 | 38806 100.34 | 39147.60 100.88
i i 950 }4242 7.376 | 1950 100.00 | 1965.84 101.23
i v 91 157_9 27106 20.59 | 1579 100.00 | 1583.30 100.27
15 || krol24p | 100 36230 33431 30.34 | 36241 100.03 | 37128.80 102.45
:f; :‘_LVIOU 101 1788 33327 31.28 | 1788 100.00 1791.68 100‘2‘11
’ f::iég le} '1958 43004 46.09 | 1958 100.00 | 1963.68 100.29
' : 2166 53138 65.34 | 2166 100.00 | 2175.58 100.44
‘ tv130 131 2307 42493 90.53 | 2307 100.00 | 2325.38 100.80
30 ftv140 141 2420 67112 124.9 | 2420 100.00 2432:60 100:52
2“12 ftv150 1561 2(?11 93075 164.4 261] 100.00 | 2656.80 101.75
‘ ftv160 161 2683 110556 216.2 | 2683 100.00 | 2725.42 101.58
23 ftv170 171 2755 123089 276.1 | 2755  100.00 2802-88 101.74
2:1 rng}gB 323 1326 623454 3874 1342 101.21 ]354:54 102.15
:Z‘z rbg3s8 | 358 1163 810019 6825 1167 100.34 | 1174.25 100:97
‘zf: rl)gf‘lOE} 403 2465 1094209 | 11137 | 2465 100.00 | 2465.95 100.04
27 rbg443 | 443 2720 1383453 | 17126 | 2720 100.00 2?20:3? 100;{}1

Table 1 - The results for the asymmeitric TSP instances.

the average solution length for the 50 runs are shown, respectively. For
all but four instances (problems: ft70, kroal24p, rbg323, rbg358) the
i:)ptimal solutions have been found. If we look at the averages of the 50
independent runs we can see that our heuristic has solved the problems
within 3% from optimum on average. If we look at the best solutions, we
can see that our heuristic has solved majority of problems within 0.5%
from optimum. there was only one exception: the best solution obtained
for the problem instance rbg323 was 101.21% from optimum.

Figures 1 and 2 show how the quality of the solutions (minimum,
maximum and average) is improving with time on two particular in-
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stances.

We have also compared our heuristic with Farthest Insertion (far),
and Farthest Insertion followed by OR-opt [6] (p. 220). OR-opt local
optimization proceeds as follows. For each connected string of s cities
(s equals 3 first, then 2, then 1), we test to see if the string can be
relocated between two other cities at reduced cost. If it can, we make
the appropriate changes. After considering all strings of three cities, all
strings of two cities and then all strings of one city are considered. When
no further exchanges improve the solution, the algorithm terminates.

__The results are given in Table 2. Farthest insertion was repeated n
times, each time another vertex was used as initial tour. The running
times for farthest insertion are much shorter, therefore we only give the
shortest solution length. The tours constructed by farthest insertion
were then improved by OR-opt. The solutions after local optimization
are given in column far+OR. The execution times were measured and
then the algorithm RAI was let running for the same amount of time
(column ¢[s]). The solutions obtained by RAI are given in column RAL
Note that the solutions obtained by RAI algorithm were usually better
with only three exceptions, the instances ry48p, rbg323, and rbg358.

We conclude that the fast and simple heuristics RAI performs re-
markably well and is competitive both in terms of solution quality and
execution times with the best heuristics proposed in the literature.
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[ [ Problem | n [ Optimum | far | fartOR [ RAT | t[s]
1 brl7 17 39 39 39 39 0.00
ftv33 34 1286 1298 1286 1286 | 0.01
ftvds 36 1473 1512 1512 1473 | 0.01
ftv38 39 1530 1569 1569 1530 | 0.01
pdd 43 5620 H644 5631 5620 | 0.01
ftvda 45 1613 1786 1623 1613 | 0.01
ftv47 48 1776 1867 1784 1777 | 0.02
ry48p 48 14422 15239 14446 14507 | 0.02
ft53 53 6905 TH67 7087 6905 | 0.02
10 ftvhh 56 1608 1728 1637 1623 | 0.03
11 ftv4 65 1839 2043 1913 1850 | 0.05
12 ft70 70 38673 40739 | 39489 | 39179 | 0.06
13 ftv70 71 1950 2184 1986 1973 | 0.06
14 || ftvd0 91 1579 1770 1585 1581 | 0.13
15 || krol24p | 100 36230 40201 36771 36321 | 0.19
16 ftv100 101 1788 20064 1847 1796 | 0.17
17 ftv110 111 1958 2202 2026 1961 | 0.25
18 ftv120 121 2166 2513 2256 2186 | 0.32
19 fiv130 | 131 [ 2307 2615 2455 2335 | 0.43
20 ftv140 141 2420 2822 2606 2436 | 0.56
21 {tv150 151 2611 3058 2735 2619 | 0.73
22 ftv160 161 2683 3130 2879 2711 0.91
23 ftv170 171 2755 3297 2957 2839 1.13
24 || rbgd23 | 323 1326 1672 1359 1392 | 10.75
25 || rbgd58 | 358 1163 1563 1219 1233 | 15.17
26 || rhgd03 | 403 2465 2720 2469 2469 | 22.62
L?? rhgddd | 443 2720 3163 _'2733 2726 | 30.84

e 00 =1 S N Wb WO BRD

Table 2 - Comparison of our algorithm with farthest insertion.
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