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Abstract—In this paper we present a differential evolution
algorithm (iL-SHADE) for solving single objective real-parameter
optimization problems. It is an improved version of the well-
known L-SHADE algorithm. The experimental results of our
algorithm are presented on CEC 2014 benchmark functions. The
experiments were performed on 30 benchmark functions and on
four different dimensions. The obtained results show that our
algorithm performs highly competitive in comparison with the
original L-SHADE algorithm.

I. INTRODUCTION

L-SHADE [1] is a state-of-the-art evolutionary algorithm
which has been the best ranked (see http://www.ntu.edu.sg/
home/EPNSugan/index files/CEC2014/CEC2014.htm) Differ-
ential Evolution (DE) algorithm on CEC2014 Competition
on Real-Parameter Single Objective Optimization [2]. The L-
SHADE algorithm extends the Success-History based Adap-
tive DE (SHADE) [3] algorithm with the linear population size
reduction mechanism. SHADE was introduced in 2013, and it
is actually an improved version of JADE [4]. SHADE-cc [5]
is one of the improved version of the SHADE algorithm.

The global optimization problem can be defined as follows.
We need to find variables of vector ~x = {x1, x2, ..., xD} which
minimizes an objective function f(~x), where D denotes the
dimensionality of the problem. Domains of the variables are
defined by their lower and upper bounds, xj,low and xj,upp

for j = 1, 2, ..., D. Therefore, a single objective optimization
is called also a bound-constrained black-box optimization. In
black-box optimization the task is to solve a global opti-
mization problem without explicit knowledge of the form or
structure of the objective function, i.e., f is a black box [3].
We can find such problems in engineering optimization and in
other real-world problems.

When dealing with the single objective optimization prob-
lems, more challenges can arise regarding properties of the
problems. Two main challenges are regarding the dimensional-
ity and multi-modality. An algorithm may get into difficulties,
either when a dimension of a problem is large, since the search
space is very huge, or when solving problems with more op-
tima. Therefore, high dimensional and multi-modal problems
are usually more challenging. In case when an optimization
function is, for example, multi-modal, an algorithm may be
trapped in a local optimum. Therefore, an algorithm needs
to try avoiding getting stacked in local optima during the

evolutionary process.
Recently, increasing research efforts on handling complex

single-objective optimization have been reported, and a variety
of algorithms have been presented. Recently, special sessions
and competitions on real-parameter single objective opti-
mization were organized at CEC2005, CEC2013, CEC2014
and CEC2015. Closely related were sessions/competitions on
large-scale global optimization, which have been also orga-
nized at CEC.

Differential Evolution (DE) is a stochastic floating-point en-
coding evolutionary algorithm that was originally designed for
numerical optimization [6]. This simple algorithm has shown
its efficiency, robustness and competitiveness when solving
real-world optimization problems, especially over continuous
spaces [7], [8].

DE has three control parameters: F is amplification factor
of the difference vector, CR is crossover control parameter,
and NP is population size. They are fixed in the original
DE algorithm. One step forward of user’s viewpoint presents
adaptive and/or self-adaptive mechanisms. Then the user does
not need to set/adjust/tune the control parameters. jDE [9] and
SADE [10], for example, have self-adaptive control parameters
(F and CR), while NP remains a user defined parameter and
is not being changed during the optimization process. Later we
can find history based mechanisms in a chain of algorithms:
JADE – SHADE – L-SHADE, in order to make F and CR
self-adaptive, and we can see that the population size also
undertakes evolutionary process, i.e. NP is fixed in SHADE,
while L-SHADE changes it during the optimization process.

In CEC2015 competition [11], the participants were allowed
to optimize the parameters of their proposed (hybrid) optimiza-
tion algorithm for each problem – Learning-Based Problems.
On previous CEC competitions an optimization algorithm
needs to use the same parameters for solving all benchmark
problems. In CEC2015 improved version of L-SHADE have
been placed on top ranks: SPS-L-SHADE-EIG [12] rank #1,
DEsPA [13] rank #2, and LSHADE-ND [14] rank #3–5.
SPS-L-SHADE-EIG extends L-SHADE with an eigenvector-
based (EIG) crossover and a successful-parent-selecting (SPS)
framework, DEsPA is an enhancement of JADE algorithm
which uses a success-based parameter adaptation with resizing
population space, and LSHADE-ND is a modified L-SHADE
and it uses also neuro-dynamic (ND) mechanism.



1: g ← 1, Archive A← ∅
2: Initialize population Pg = (~xi,g, . . . , ~xNP,g) randomly
3: Set all values in MCR,MF to 0.5;
4: k ← 1 // index counter
5: while the termination criatera are not meet do
6: SCR ← ∅, SF ← ∅
7: for i = 1 to NP do
8: ri ← select from [1, H] randomly // H = 6
9: if MCR,ri = ⊥ then

10: CRi,g ← 0
11: else
12: CRi,g ← Ni(MCR,ri , 0.1) // Normal distribution
13: end if
14: Fi,g ← Ci(MF ,ri , 0.1) // Cauchy distribution
15: ~ui,g ← current-to-pBest/1/bin
16: end for
17: for i = 1 to NP do
18: if f(~ui,g) ≤ f(~xi,g) then
19: ~xi,g+1 ← ~ui,g

20: else
21: ~xi,g+1 ← ~xi,g

22: end if
23: if f(~ui,g) < f(~xi,g) then
24: ~xi,g → A,CRi,g → SCR,Fi,g → SF

25: end if
26: Shrink A, if necessary
27: Update MCR and MF (Algorithm 2)
28: Apply LPSR strategy // linear population size reduction
29: end for
30: g ← g + 1

31: end while
Algorithm 1: The L-SHADE[1] algorithm

SHADE [3] is an adaptive DE which incorporates success-
history based parameter adaptation and one of the state-of-the-
art DE algorithms. Success-history based adaptation uses a his-
torical memory MCR, MF which stores a set of CR, F values
that have performed well in the past, and generate new CR, F
pairs by directly sampling the parameter space close to one of
these stored pairs. L-SHADE [1] further extends SHADE with
Linear Population Size Reduction (LPSR), which continually
decreases the population size according to a linear function.

In this paper we present an improved version of the L-
SHADE algorithm, called iL-SHADE. The main improve-
ments of iL-SHADE are applied in the memory update mech-
anism.

The structure of the paper is as follows. Section II gives
background for this work, where an overview of DE, and a
description of the L-SHADE algorithm are given. Section III
presents a description of our new variant of the algorithm,
called iL-SHADE, which is used in these experiments. In
Section IV experimental results of the iL-SHADE algorithm
on benchmark functions are presented. Section V concludes
the paper with some final remarks.

II. BACKGROUND

This section gives backgrounds for this work, an overview
of DE, and a description of L-SHADE.

1: if SCR 6= ∅ and SF 6= ∅ then
2: if MCR,k,g = ⊥ or max(SCR) = 0 then
3: MCR,k,g ←⊥
4: else
5: MCR,k,g+1 ← meanWL(SCR)
6: end if
7: MF ,k,g+1 ← meanWL(SF )
8: k ← k + 1
9: if k > H then

10: k ← 1
11: end if
12: else
13: MCR,k,g+1 ←MCR,k,g

14: MF ,k,g+1 ←MF ,k,g

15: end if
Algorithm 2: Memory update in the L-SHADE[1] algorithm

A. Differential Evolution

Differential evolution (DE) belongs to the group of evolu-
tionary algorithms. We can find out that DE is very useful
in many practical applications and researches [15], [16], [17],
[7].

The population P of the DE algorithm [6] consists of NP
individuals which are represented as vectors:

Pg = (~x1,g, . . . , ~xi,g, . . . , ~xNP,g), i = 1, 2, ...,NP ,

where g is a generation index g ∈ {1, 2, . . . , GMAX }. Each
vector ~xi,g has D variables:

~xi,g = (xi,1,g, xi,2,g, ..., xi,D,g).

DE evolves a randomly initialized population throughout
GMAX generations guided the individuals in searching process
toward to a global optimum. DE employs three operations for
each individual during one generation: mutation, crossover and
selection. At the end of evolutionary process, i.e. after GMAX

generations, DE stops and returns the best vector found so far
as the solution.

During the mutation operation DE creates a mutant vector
~vi,g using one of the mutation strategies. The ’DE/rand/1’
strategy has been introduced in the original DE algorithm and
it is still very often used in practice. This strategy is defined
as follow:

~vi,g = ~xr1,g + F · (~xr2,g − ~xr3,g),

where F denotes mutation scale factor, and r1, r2, and r3 are
indexes within a set of {1,NP}. The indexes are randomly
chosen in such a way that they are pairwise different and
also different from index i. The mutant vector with index i
is created using three vectors, a difference between two of
them is multiplied with the scale factor F and then the third
vector is added.

The other useful DE strategies [7], [8] are:

• ”rand/1”: ~vi,g = ~xr1,g + F (~xr2,g − ~xr3,g),

• ”best/1”: ~vi,g = ~xbest,g + F (~xr1,g − ~xr2,g),



1: g ← 1, Archive A← ∅
2: Initialize population Pg = (~xi,g, . . . , ~xNP,g) randomly
3: Set all values in MF to 0.5
4: Set all values in MCR to 0.8 ⇐=
5: k ← 1 // index counter
6: while the termination criatera are not meet do
7: SCR ← ∅, SF ← ∅
8: for i = 1 to NP do
9: ri ← select from [1, H] randomly

10: if ri = H then ⇐=
11: MF ,ri ← 0.9 ⇐=
12: MCR,ri ← 0.9 ⇐=
13: end if ⇐=
14: if MCR,ri < 0 then ⇐=
15: CRi,g ← 0
16: else
17: CRi,g ← Ni(MCR,ri , 0.1)
18: end if
19: if g < 0.25GMAX then ⇐=
20: CRi,g ← max(CRi,g, 0.5) ⇐=
21: else if g < 0.5GMAX then ⇐=
22: CRi,g ← max(CRi,g, 0.25) ⇐=
23: end if ⇐=
24: Fi,g ← Ci(MF ,ri , 0.1)
25: if g < 0.25GMAX then ⇐=
26: Fi,g ← min(Fi,g, 0.7) ⇐=
27: else if g < 0.5GMAX then ⇐=
28: Fi,g ← min(Fi,g, 0.8) ⇐=
29: else if g < 0.75GMAX then ⇐=
30: Fi,g ← min(Fi,g, 0.9) ⇐=
31: end if ⇐=
32: ~ui,g ← current-to-pBest/1/bin
33: end for
34: for i = 1 to NP do
35: if f(~ui,g) ≤ f(~xi,g) then
36: ~xi,g+1 ← ~ui,g

37: else
38: ~xi,g+1 ← ~xi,g

39: end if
40: if f(~ui,g) < f(~xi,g) then
41: ~xi,g → A,CRi,g → SCR,Fi,g → SF

42: end if
43: Shrink A, if necessary
44: Update MCR and MF (Algorithm 4)
45: Apply LPSR strategy // linear population size reduction
46: Update p using Eq. (1) ⇐=
47: end for
48: g ← g + 1

49: end while
Algorithm 3: iL-SHADE algorithm

• ”current to best/1”:
~vi,g = ~xi,g + F (~xbest,g − ~xi,g) + F (~xr1,g − ~xr2,g),

• ”best/2”:
~vi,g = ~xbest,g + F (~xr1,g − ~xr2,g) + F (~xr3,g − ~xr4,g),

• ”rand/2”:
~vi,g = ~xr1,g + F (~xr2,g − ~xr3,g) + F (~xr4,g − ~xr5,g),

where the indexes r1–r5 represent the random and mutually
different integers generated within the range {1,NP} and also
different from index i. ~xbest is the best vector in a current
generation.

1: if SCR 6= ∅ and SF 6= ∅ then
2: if MCR,k,g = ⊥ or max(SCR) = 0 then
3: MCR,k,g ←⊥
4: else
5: MCR,k,g+1 ← (meanWL(SCR) +MCR,k,g)/2 ⇐=
6: end if
7: MF ,k,g+1 ← (meanWL(SF ) +MF ,k,g)/2 ⇐=
8: k ← k + 1
9: if k > H then

10: k ← 1
11: end if
12: else
13: MCR,k,g+1 ←MCR,k,g

14: MF ,k,g+1 ←MF ,k,g

15: end if
Algorithm 4: Memory update in the iL-SHADE algorithm

Next operation is crossover. It creates a trial vector ~ui,g

using binomial crossover:

ui,j,g =

{
vi,j,g, if rand(0, 1) ≤ CR or j = jrand,

xi,j,g, otherwise,

for i = 1, 2, ...,NP and j = 1, 2, ..., D. CR is crossover
parameter within the range [0, 1) and presents the probability
of creating components for a trial vector from a mutant vector.
Index jrand ∈ {1, 2, ...,NP} is a randomly chosen integer, and
at least the component vi,jrand,g is surely from a mutant vector.
If a component was not selected from the mutant vector, then
it is taken from the parent vector ~xi,g .

Now, the trial vector is evaluated – an objective function f
is calculated. Then selection operation compares two vectors,
population vector ~xi,g and its corresponding trial vector ~ui,g ,
according to their objective function values. The better vector
will survive and become a member of the next generation. The
selection operation for a minimization optimization problem
is defined as follow:

~xi,g+1 =

{
~ui,g, if f(~ui,g) ≤ f(~xi,g),

~xi,g, otherwise.

B. L-SHADE Algorithm

In this section L-SHADE [1] is briefly presented. L-SHADE
is DE-based algorithm with success-history based parameter
adaptation (SHADE [3]) and the later is an improved version
of JADE [4]. Source code of L-SHADE is available at https:
//sites.google.com/site/tanaberyoji/home. A pseudo-code of L-
SHADE is shown in Algorithms 1 and 2.

SHADE has been the best ranked DE-based algorithm at
CEC-2013 Special Session & Competition on Real-Parameter
Single Objective Optimization, while among all 21 algorithms
it has been on the four-th place after the top three performing
algorithms NBIPOP-aCMA-ES [18], iCMAES-ILS [19], and
DRMA-LSCh-CMA [20].

L-SHADE combines SHADE and linear population size re-
duction mechanism, which after each generation decreases the
population size according to a linear function. It uses current-
to-pBest/1/bin strategy to generate a trial vector, weighted



TABLE I
THE RESULTS OF iL-SHADE FOR D = 10. THE ERROR VALUES BETWEEN

THE BEST FITNESS VALUES FOUND IN EACH RUN OUT OF 51 RUNS AND
TRUE OPTIMAL VALUE ARE CALCULATED AND THEN BEST, WORST,

MEDIAN, MEAN, AND STANDARD DEVIATION OF THE ERROR VALUES ARE
PRESENTED IN EACH COLUMN.

Best Worst Median Mean Std.

f1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f4 0.0000E+00 3.4780E+01 3.4780E+01 3.1370E+01 1.0445E+01

f5 0.0000E+00 2.0203E+01 2.0005E+01 1.7684E+01 6.5216E+00

f6 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f7 0.0000E+00 1.9678E–02 0.0000E+00 1.4000E–03 4.3830E–03

f8 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f9 0.0000E+00 3.9798E+00 9.9496E–01 1.3071E+00 8.7850E–01

f10 0.0000E+00 6.2454E–02 0.0000E+00 1.3471E–02 2.5943E–02

f11 1.8736E–01 2.4220E+02 1.8472E+01 3.2631E+01 4.8618E+01

f12 2.9572E–07 1.7007E–01 4.6223E–02 5.0280E–02 3.2668E–02

f13 5.9440E–03 5.9737E–02 2.4615E–02 2.8831E–02 1.3213E–02

f14 2.1393E–02 1.4355E–01 6.4297E–02 6.5469E–02 2.4994E–02

f15 2.0716E–01 5.4380E–01 3.7781E–01 3.7227E–01 8.0801E–02

f16 3.4414E–01 1.5609E+00 9.1084E–01 9.6308E–01 3.6262E–01

f17 2.0814E–01 3.8800E+01 1.6194E+00 3.6939E+00 6.3116E+00

f18 8.2715E–03 5.0000E–01 1.5998E–01 1.6950E–01 1.3808E–01

f19 1.2857E–04 1.0159E+00 3.6544E–02 9.1691E–02 2.3246E–01

f20 7.7652E–03 6.2108E–01 3.6850E–01 3.2392E–01 2.1155E–01

f21 8.5228E–06 8.0930E–01 2.7548E–02 1.9975E–01 2.4363E–01

f22 9.7961E–07 2.0004E+01 2.2781E–02 4.3778E–01 2.7958E+00

f23 3.2946E+02 3.2946E+02 3.2946E+02 3.2946E+02 0.0000E+00

f24 1.0000E+02 1.1050E+02 1.0701E+02 1.0583E+02 2.7824E+00

f25 1.0000E+02 2.0137E+02 1.1605E+02 1.2881E+02 3.3072E+01

f26 1.0001E+02 1.0010E+02 1.0003E+02 1.0004E+02 1.9585E–02

f27 6.2384E–01 4.0013E+02 1.3784E+00 1.1842E+02 1.6281E+02

f28 3.5683E+02 4.8084E+02 3.7211E+02 4.0790E+02 4.9609E+01

f29 2.2154E+02 2.2371E+02 2.2176E+02 2.2215E+02 6.0318E–01

f30 4.5429E+02 5.4960E+02 4.6276E+02 4.7555E+02 2.4252E+01

Lehmer mean, meanWL (See Eqs.(7)–(9) in [1]), in order to
influence F , CR control parameters adaptation. A historical
memory has H entries (|MF | = |MCR| = H).

L-SHADE wins the competition at CEC-2014 Special Ses-
sion & Competition on Real-Parameter Single Objective Opti-
mization [2]. All three control parameter remain fixed during
an optimization process in the original DE algorithm [6],
while L-SHADE adapts F and CR, and shrinks NP during
an optimization process.

III. THE PROPOSED ALGORITHM

In this section our iL-SHADE algorithm for solving single-
objective, global optimization is presented. The iL-SHADE
algorithm is an extended version of the L-SHADE [1] algo-
rithm.

TABLE II
THE RESULTS OF iL-SHADE FOR D = 30. THE ERROR VALUES BETWEEN

THE BEST FITNESS VALUES FOUND IN EACH RUN OUT OF 51 RUNS AND
TRUE OPTIMAL VALUE ARE CALCULATED AND THEN BEST, WORST,

MEDIAN, MEAN, AND STANDARD DEVIATION OF THE ERROR VALUES ARE
PRESENTED IN EACH COLUMN.

Best Worst Median Mean Std.

f1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f4 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f5 2.0000E+01 2.0415E+01 2.0013E+01 2.0069E+01 1.0049E–01

f6 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f7 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f8 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f9 1.9899E+00 1.1940E+01 6.9647E+00 6.9062E+00 2.0039E+00

f10 0.0000E+00 4.1638E–02 0.0000E+00 1.1022E–02 1.2734E–02

f11 4.6422E+02 1.6868E+03 1.1672E+03 1.1699E+03 2.8048E+02

f12 6.1444E–02 3.4395E–01 1.4641E–01 1.4807E–01 5.1389E–02

f13 5.0159E–02 1.5002E–01 9.2748E–02 9.4959E–02 2.1182E–02

f14 1.2891E–01 2.7996E–01 1.9818E–01 1.9840E–01 3.4574E–02

f15 1.3193E+00 2.3358E+00 1.8465E+00 1.8449E+00 2.7225E–01

f16 5.2813E+00 9.8492E+00 7.9778E+00 8.0154E+00 9.8132E–01

f17 2.7172E+01 2.4582E+02 1.0424E+02 1.3054E+02 6.5206E+01

f18 1.2605E+00 6.4688E+00 4.1785E+00 3.7780E+00 1.4522E+00

f19 4.6832E–01 4.2177E+00 2.2482E+00 2.2855E+00 7.5547E–01

f20 9.0278E–01 5.3181E+00 2.2294E+00 2.4139E+00 1.0882E+00

f21 1.0586E+00 1.7324E+02 1.4780E+01 5.0691E+01 6.1239E+01

f22 2.0939E+01 1.4790E+02 2.2297E+01 2.9005E+01 2.4204E+01

f23 3.1524E+02 3.1524E+02 3.1524E+02 3.1524E+02 0.0000E+00

f24 2.0000E+02 2.2398E+02 2.2172E+02 2.2046E+02 6.0871E+00

f25 2.0252E+02 2.0269E+02 2.0259E+02 2.0259E+02 4.1734E–02

f26 1.0006E+02 1.0014E+02 1.0009E+02 1.0010E+02 2.0571E–02

f27 3.0000E+02 3.3724E+02 3.0000E+02 3.0073E+02 5.2140E+00

f28 8.0157E+02 8.6817E+02 8.4788E+02 8.4432E+02 1.4806E+01

f29 7.1360E+02 7.2854E+02 7.1518E+02 7.1631E+02 3.3100E+00

f30 4.1724E+02 2.4669E+03 1.0545E+03 1.1984E+03 5.5469E+02

The proposed iL-SHADE algorithm differs from the L-
SHADE algorithm in using the following mechanisms:

• memory update mechanism stores historical memory val-
ues of previous generation and uses them to calculate the
historical memory values for the next generation.

• a historical memory has H entries, and one of them
contains values that are fixed. This entry is not updated,
but its values are used for generating CRi and Fi control
parameters.

• all historical memory values in MCR are initialized to
0.8.

• if MCR is assigned the terminal value ⊥ then MCR is
reset to 0.0.

The pseudo-code of the iL-SHADE algorithm is presented
in Algorithms 3 and 4. In both algorithms, we marked lines



TABLE III
THE RESULTS OF iL-SHADE FOR D = 50. THE ERROR VALUES BETWEEN

THE BEST FITNESS VALUES FOUND IN EACH RUN OUT OF 51 RUNS AND
TRUE OPTIMAL VALUE ARE CALCULATED AND THEN BEST, WORST,

MEDIAN, MEAN, AND STANDARD DEVIATION OF THE ERROR VALUES ARE
PRESENTED IN EACH COLUMN.

Best Worst Median Mean Std.

f1 2.3460E+01 8.2134E+03 1.0890E+03 1.9128E+03 2.0566E+03

f2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f4 2.7711E–03 9.8397E+01 9.8103E+01 6.1695E+01 4.7768E+01

f5 2.0000E+01 2.1096E+01 2.0000E+01 2.0100E+01 2.0180E–01

f6 0.0000E+00 1.5000E+00 4.5893E–04 6.2683E–02 2.5711E–01

f7 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f8 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f9 5.9698E+00 1.6914E+01 1.1940E+01 1.1374E+01 2.6044E+00

f10 2.4993E–02 1.7509E–01 8.0111E–02 8.0426E–02 3.1247E–02

f11 1.8234E+03 3.6626E+03 2.9847E+03 2.9588E+03 4.0428E+02

f12 8.7978E–02 3.4365E–01 1.7206E–01 1.7651E–01 5.1823E–02

f13 7.6665E–02 2.0497E–01 1.4392E–01 1.4190E–01 2.7772E–02

f14 1.8851E–01 3.4104E–01 2.5799E–01 2.6051E–01 3.3346E–02

f15 2.9777E+00 5.1987E+00 4.0281E+00 4.1167E+00 4.8177E–01

f16 1.4671E+01 1.8942E+01 1.6294E+01 1.6360E+01 9.0217E–01

f17 3.3564E+02 1.3619E+03 7.0213E+02 7.1636E+02 2.2673E+02

f18 9.4324E+00 6.2971E+01 2.7077E+01 2.9366E+01 1.0327E+01

f19 5.5698E+00 1.0701E+01 8.0301E+00 8.1581E+00 1.3151E+00

f20 3.1435E+00 1.8496E+01 9.2150E+00 9.4487E+00 2.6791E+00

f21 2.4363E+02 6.4210E+02 3.6992E+02 3.7280E+02 1.1306E+02

f22 2.2988E+01 3.6731E+02 1.4428E+02 1.2020E+02 9.0236E+01

f23 3.4400E+02 3.4400E+02 3.4400E+02 3.4400E+02 0.0000E+00

f24 2.6871E+02 2.7627E+02 2.7433E+02 2.7405E+02 1.5744E+00

f25 2.0484E+02 2.0615E+02 2.0514E+02 2.0519E+02 3.0501E–01

f26 1.0009E+02 2.0000E+02 1.0014E+02 1.0406E+02 1.9575E+01

f27 3.0000E+02 3.6799E+02 3.3116E+02 3.2330E+02 2.2645E+01

f28 1.0529E+03 1.2523E+03 1.1297E+03 1.1330E+03 3.6613E+01

f29 7.3330E+02 9.0117E+02 7.9019E+02 8.1256E+02 4.9211E+01

f30 7.8382E+03 9.4726E+03 8.5653E+03 8.5891E+03 3.7571E+02

with ⇐= that are new in iL-SHADE or changed with respect
to the L-SHADE algorithm.

Let us summarize and describe the main features that are
proposed in the iL-SHADE algorithm:

1) A higher values for CR control parameter are being
propagated during the optimization process in the fol-
lowing ways:

• all historical memory values in MCR are initialized
to 0.8 (in L-SHADE it is set to 0.5),

• one historical memory entry (i.e. the last one in
our case, see Lines 10–13 in Algorithm 3) contains
fixed values, i.e. MCR,ri and MF ,ri are set to 0.9.
In such a way not only a higher value for CRi is
used more often, but also a higher Fi as a pair.
A trial vector has a higher probability of creating

TABLE IV
THE RESULTS OF iL-SHADE FOR D = 100. THE ERROR VALUES

BETWEEN THE BEST FITNESS VALUES FOUND IN EACH RUN OUT OF 51
RUNS AND TRUE OPTIMAL VALUE ARE CALCULATED AND THEN BEST,
WORST, MEDIAN, MEAN, AND STANDARD DEVIATION OF THE ERROR

VALUES ARE PRESENTED IN EACH COLUMN.

Best Worst Median Mean Std.

f1 7.9224E+04 5.8851E+05 1.8516E+05 1.9394E+05 8.0812E+04

f2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f4 1.2600E+02 2.1780E+02 1.5696E+02 1.7346E+02 3.0399E+01

f5 2.0000E+01 2.0717E+01 2.0031E+01 2.0107E+01 1.7287E–01

f6 8.1519E–01 1.1459E+01 5.8359E+00 5.8349E+00 2.3198E+00

f7 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f8 2.2404E–05 2.9129E–03 2.3004E–04 3.9692E–04 5.2925E–04

f9 1.4924E+01 3.4832E+01 2.5121E+01 2.4968E+01 4.6660E+00

f10 5.3794E+00 1.7381E+01 1.0211E+01 1.0482E+01 3.2228E+00

f11 8.0221E+03 1.0824E+04 9.5351E+03 9.4379E+03 6.9454E+02

f12 2.0045E–01 8.9359E–01 3.8552E–01 3.9561E–01 1.2114E–01

f13 1.4860E–01 2.9573E–01 2.2923E–01 2.2813E–01 2.8423E–02

f14 1.7909E–01 2.5782E–01 2.0291E–01 2.0382E–01 1.5239E–02

f15 9.5777E+00 1.6382E+01 1.2455E+01 1.2928E+01 1.5267E+00

f16 3.5228E+01 3.9649E+01 3.8044E+01 3.7996E+01 7.4736E–01

f17 2.7981E+03 5.6538E+03 4.2180E+03 4.1785E+03 6.2911E+02

f18 1.9425E+02 2.8489E+02 2.2742E+02 2.3086E+02 1.9319E+01

f19 8.9930E+01 9.5206E+01 9.2053E+01 9.2132E+01 1.2563E+00

f20 4.6399E+01 1.3397E+02 8.7128E+01 8.8120E+01 1.9660E+01

f21 6.3687E+02 2.5057E+03 1.6320E+03 1.6523E+03 4.1225E+02

f22 6.3723E+02 1.3582E+03 1.0424E+03 1.0360E+03 1.7832E+02

f23 3.4823E+02 3.4823E+02 3.4823E+02 3.4823E+02 0.0000E+00

f24 3.8532E+02 3.9725E+02 3.8977E+02 3.8995E+02 2.7466E+00

f25 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00

f26 2.0000E+02 2.0000E+02 2.0000E+02 2.0000E+02 0.0000E+00

f27 3.1628E+02 4.3786E+02 3.5640E+02 3.6139E+02 2.8965E+01

f28 1.5214E+03 2.3818E+03 2.2084E+03 2.2046E+03 1.2714E+02

f29 7.0733E+02 1.3533E+03 7.6085E+02 8.0594E+02 1.4325E+02

f30 5.5461E+03 1.0175E+04 8.0824E+03 7.9206E+03 9.6872E+02

components from a mutant vector if CR value is
higher.

2) Memory update mechanism stores historical memory
values MCR and MF of current generation, say g, and
uses them weighted equally with the weighted Lehmer
means to calculate the historical memory values for the
next generation, g+1. See Lines 5 and 7 in Algorithm 4.

3) Very high values of F and low values of CR are not
allowed in an early stage of evolutionary process (Lines
19–23 and 24–31 in Algorithm 3).

4) After each generation g, p value for current-to-pBest/1
mutation in the next generation, g + 1, is computed as



TABLE V
COMPARISON OF RESULTS OBTAINED BY iL-SHADE AND L-SHADE FOR

D = 10.

iL-SHADE L-SHADE

f1 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f2 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f3 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f4 3.1370E+01 ± 1.0343E+01 ≈ 3.0007E+01 ± 1.1968E+01

f5 1.7684E+01 ± 6.4574E+00 ≈ 1.6381E+01 ± 7.3540E+00

f6 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f7 1.4000E–03 ± 4.3398E–03 + 5.0207E–03 ± 1.2120E–02

f8 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f9 1.3071E+00 ± 8.6985E–01 + 2.3040E+00 ± 8.2368E–01

f10 1.3471E–02 ± 2.5687E–02 ≈ 1.2246E–02 ± 2.7709E–02

f11 3.2631E+01 ± 4.8139E+01 ≈ 3.6160E+01 ± 4.3451E+01

f12 5.0280E–02 ± 3.2346E–02 + 6.7638E–02 ± 1.7475E–02

f13 2.8831E–02 ± 1.3083E–02 + 5.1009E–02 ± 1.6907E–02

f14 6.5469E–02 ± 2.4748E–02 + 8.0008E–02 ± 2.7314E–02

f15 3.7227E–01 ± 8.0005E–02 ≈ 3.7892E–01 ± 6.5358E–02

f16 9.6308E–01 ± 3.5905E–01 + 1.2212E+00 ± 3.7540E–01

f17 3.6939E+00 ± 6.2494E+00 − 9.9070E–01 ± 8.7412E–01

f18 1.6950E–01 ± 1.3672E–01 ≈ 2.0031E–01 ± 2.6532E–01

f19 9.1691E–02 ± 2.3017E–01 + 1.2429E–01 ± 2.0154E–01

f20 3.2392E–01 ± 2.0946E–01 − 1.7440E–01 ± 1.7106E–01

f21 1.9975E–01 ± 2.4123E–01 + 4.1243E–01 ± 2.6888E–01

f22 4.3778E–01 ± 2.7683E+00 − 5.0267E–02 ± 4.6226E–02

f23 3.2946E+02 ± 2.8422E–13 ≈ 3.2946E+02 ± 2.8422E–13

f24 1.0583E+02 ± 2.7550E+00 + 1.0781E+02 ± 1.8812E+00

f25 1.2881E+02 ± 3.2746E+01 ≈ 1.2933E+02 ± 3.7089E+01

f26 1.0004E+02 ± 1.9392E–02 + 1.0005E+02 ± 1.7274E–02

f27 1.1842E+02 ± 1.6121E+02 ≈ 5.0305E+01 ± 1.2379E+02

f28 4.0790E+02 ± 4.9120E+01 − 3.8589E+02 ± 3.9653E+01

f29 2.2215E+02 ± 5.9724E–01 ≈ 2.2204E+02 ± 5.0400E–01

f30 4.7555E+02 ± 2.4013E+01 − 4.6454E+02 ± 9.2636E+00

follows:

p = (
pmax − pmin

max nfes
) · nfes + pmin, (1)

where nfes is the current number of objective function
evaluations, and max nfes is the maximum number of
objective function evaluations.

One can notice, that changes/extensions from L-SHADE to
iL-SHADE are not so big — the main features of L-SHADE
remains unchanged. The DE strategy current-to-pBest/1/bin,
external archive, linear population size reduction, etc. have
been kept unchanged. Therefore, we will compare a perfor-
mance of iL-SHADE against L-SHADE in next section.

IV. EXPERIMENTAL RESULTS

The iL-SHADE algorithm was tested on a set of 30 bench-
mark functions [2]. The dimensions of benchmark functions
are D = 10, 30, 50 and 100, and 51 runs of an algorithm were
needed for each function. The maximum number of objective

TABLE VI
COMPARISON OF RESULTS OBTAINED BY iL-SHADE AND L-SHADE FOR

D = 30.

iL-SHADE L-SHADE

f1 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f2 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f3 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f4 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f5 2.0069E+01 ± 9.9499E–02 + 2.0116E+01 ± 3.3621E–02

f6 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f7 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f8 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f9 6.9062E+00 ± 1.9842E+00 ≈ 6.8510E+00 ± 1.5612E+00

f10 1.1022E–02 ± 1.2609E–02 + 2.0003E–02 ± 1.7473E–02

f11 1.1699E+03 ± 2.7772E+02 ≈ 1.2213E+03 ± 1.7937E+02

f12 1.4807E–01 ± 5.0883E–02 + 1.6299E–01 ± 2.4932E–02

f13 9.4959E–02 ± 2.0973E–02 + 1.1545E–01 ± 1.7484E–02

f14 1.9840E–01 ± 3.4233E–02 + 2.3454E–01 ± 2.7345E–02

f15 1.8449E+00 ± 2.6957E–01 + 2.1927E+00 ± 2.2811E–01

f16 8.0154E+00 ± 9.7165E–01 + 8.5660E+00 ± 3.9343E–01

f17 1.3054E+02 ± 6.4563E+01 + 2.1358E+02 ± 1.0563E+02

f18 3.7780E+00 ± 1.4379E+00 + 6.0481E+00 ± 3.0859E+00

f19 2.2855E+00 ± 7.4803E–01 + 3.5946E+00 ± 6.2441E–01

f20 2.4139E+00 ± 1.0774E+00 + 2.9415E+00 ± 1.0209E+00

f21 5.0691E+01 ± 6.0636E+01 ≈ 8.7216E+01 ± 8.4088E+01

f22 2.9005E+01 ± 2.3965E+01 − 2.7857E+01 ± 1.8702E+01

f23 3.1524E+02 ± 3.5561E–13 ≈ 3.1524E+02 ± 3.9790E–13

f24 2.2046E+02 ± 6.0271E+00 + 2.2422E+02 ± 1.0477E+00

f25 2.0259E+02 ± 4.1323E–02 ≈ 2.0261E+02 ± 6.2762E–02

f26 1.0010E+02 ± 2.0369E–02 + 1.0011E+02 ± 1.2946E–02

f27 3.0073E+02 ± 5.1626E+00 ≈ 3.0000E+02 ± 1.8342E–13

f28 8.4432E+02 ± 1.4660E+01 − 8.3885E+02 ± 1.3115E+01

f29 7.1631E+02 ± 3.2774E+00 ≈ 7.1631E+02 ± 2.9988E+00

f30 1.1984E+03 ± 5.4922E+02 ≈ 1.1898E+03 ± 5.1402E+02

function evaluations is D×10,000. The optimal values are
known for all benchmark functions.

PC configuration:
System: GNU/Linux, CPU: Intel(R) Core(TM) i7-4770 CPU
3.4 GHz, RAM: 16 GB, Programming language: C++, Algo-
rithm: iL-SHADE, Compiler: GNU Compiler (g++).

In the experiments, parameters for our algorithm were
kept unchanged according to the parameters setting in the L-
SHADE algorithm, except the following parameters:

• p value for current-to-pBest/1 mutation linearly decreases
from pmax = 0.2 to pmin = 0.1 during the evolutionary
process (in L-SHADE p is fixed to 0.11),

• rN
init

is 12 (in L-SHADE it is 18).
The initial population size N init is set to the dimensionality
D of the functions multiplied by rN

init

. The calculation of
the initial population size is the same in both algorithms.

The obtained results (error values f(~x)−f(~x∗)) as required



TABLE VII
COMPARISON OF RESULTS OBTAINED BY iL-SHADE AND L-SHADE FOR

D = 50.

iL-SHADE L-SHADE

f1 1.9128E+03 ± 2.0363E+03 − 7.2213E+02 ± 7.6696E+02

f2 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f3 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f4 6.1695E+01 ± 4.7297E+01 ≈ 6.4626E+01 ± 4.4283E+01

f5 2.0100E+01 ± 1.9981E–01 + 2.0252E+01 ± 4.6847E–02

f6 6.2683E–02 ± 2.5457E–01 + 4.9725E–01 ± 6.4708E–01

f7 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f8 0.0000E+00 ± 0.0000E+00 + 4.9281E–09 ± 9.6145E–09

f9 1.1374E+01 ± 2.5787E+00 ≈ 1.1422E+01 ± 2.3726E+00

f10 8.0426E–02 ± 3.0939E–02 + 1.2477E–01 ± 3.3960E–02

f11 2.9588E+03 ± 4.0030E+02 + 3.2831E+03 ± 3.3141E+02

f12 1.7651E–01 ± 5.1313E–02 + 2.2044E–01 ± 2.6505E–02

f13 1.4190E–01 ± 2.7498E–02 + 1.6368E–01 ± 2.0719E–02

f14 2.6051E–01 ± 3.3017E–02 + 3.0329E–01 ± 2.2080E–02

f15 4.1167E+00 ± 4.7702E–01 + 5.2221E+00 ± 4.2343E–01

f16 1.6360E+01 ± 8.9328E–01 + 1.6792E+01 ± 4.4278E–01

f17 7.1636E+02 ± 2.2450E+02 + 1.4396E+03 ± 3.1198E+02

f18 2.9366E+01 ± 1.0226E+01 + 1.0002E+02 ± 1.4931E+01

f19 8.1581E+00 ± 1.3021E+00 ≈ 8.0939E+00 ± 1.7959E+00

f20 9.4487E+00 ± 2.6527E+00 + 1.4306E+01 ± 4.4138E+00

f21 3.7280E+02 ± 1.1195E+02 + 5.0642E+02 ± 1.5089E+02

f22 1.2020E+02 ± 8.9347E+01 ≈ 1.1811E+02 ± 6.8397E+01

f23 3.4400E+02 ± 4.5440E–13 ≈ 3.4400E+02 ± 4.5558E–13

f24 2.7405E+02 ± 1.5589E+00 + 2.7515E+02 ± 6.3438E–01

f25 2.0519E+02 ± 3.0200E–01 + 2.0533E+02 ± 3.4392E–01

f26 1.0406E+02 ± 1.9383E+01 − 1.0017E+02 ± 1.8723E–02

f27 3.2330E+02 ± 2.2422E+01 + 3.3711E+02 ± 3.5587E+01

f28 1.1330E+03 ± 3.6252E+01 − 1.1147E+03 ± 3.4293E+01

f29 8.1256E+02 ± 4.8726E+01 ≈ 8.0532E+02 ± 3.8650E+01

f30 8.5891E+03 ± 3.7201E+02 ≈ 8.6555E+03 ± 3.6608E+02

in [2] are presented in Tables I, II, III, and IV. The error values
between the best fitness values found in each run out of 51
runs and true optimal value are calculated and then best, worst,
median, mean, and standard deviation of the error values are
presented in each column in the tables.

Next we compare a performance of the iL-SHADE and L-
SHADE algorithms. The results of SHADE were obtained on
the same computer, too. We present the results in Tables V, VI,
VII, and VIII for each dimensions. In these tables the mean and
standard deviation values are shown for the iL-SHADE and
L-SHADE algorithms. The statistical testing on 30 benchmark
functions is shown in the last column of the tables. The sym-
bols +,−,≈ indicate that the proposed iL-SHADE algorithm
performed significantly better (+), significantly worse (−), or
the performance difference is not statistically significant (≈)
compared to the L-SHADE algorithm. We used the Wilcoxon
rank-sum test at the 0.05 significance level.

Summarized results of the statistical testing are presented in

TABLE VIII
COMPARISON OF RESULTS OBTAINED BY iL-SHADE AND L-SHADE FOR

D = 100.

iL-SHADE L-SHADE

f1 1.9394E+05 ± 8.0015E+04 ≈ 1.7168E+05 ± 5.1877E+04

f2 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f3 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f4 1.7346E+02 ± 3.0099E+01 − 1.6212E+02 ± 2.6124E+01

f5 2.0107E+01 ± 1.7116E–01 + 2.0555E+01 ± 3.9808E–02

f6 5.8349E+00 ± 2.2970E+00 + 9.0933E+00 ± 2.6690E+00

f7 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f8 3.9692E–04 ± 5.2403E–04 + 1.2548E–02 ± 8.6141E–03

f9 2.4968E+01 ± 4.6200E+00 + 3.3652E+01 ± 6.2040E+00

f10 1.0482E+01 ± 3.1911E+00 + 2.6067E+01 ± 5.0688E+00

f11 9.4379E+03 ± 6.8769E+02 + 1.0851E+04 ± 5.3633E+02

f12 3.9561E–01 ± 1.1995E–01 + 4.2341E–01 ± 4.7061E–02

f13 2.2813E–01 ± 2.8143E–02 + 2.4111E–01 ± 2.2058E–02

f14 2.0382E–01 ± 1.5089E–02 + 2.1901E–01 ± 1.4371E–02

f15 1.2928E+01 ± 1.5117E+00 + 1.6145E+01 ± 1.1058E+00

f16 3.7996E+01 ± 7.4000E–01 + 3.9220E+01 ± 4.7065E–01

f17 4.1785E+03 ± 6.2291E+02 + 4.4581E+03 ± 7.0390E+02

f18 2.3086E+02 ± 1.9129E+01 ≈ 2.2411E+02 ± 1.5406E+01

f19 9.2132E+01 ± 1.2439E+00 + 9.5817E+01 ± 1.8786E+00

f20 8.8120E+01 ± 1.9467E+01 + 1.4335E+02 ± 4.7605E+01

f21 1.6523E+03 ± 4.0818E+02 + 2.2699E+03 ± 4.5893E+02

f22 1.0360E+03 ± 1.7656E+02 + 1.1194E+03 ± 1.7990E+02

f23 3.4823E+02 ± 1.1369E–13 ≈ 3.4823E+02 ± 3.1639E–13

f24 3.8995E+02 ± 2.7195E+00 + 3.9419E+02 ± 2.0310E+00

f25 2.0000E+02 ± 2.7374E–13 ≈ 2.0000E+02 ± 2.0054E–13

f26 2.0000E+02 ± 5.3531E–13 ≈ 1.9804E+02 ± 1.3833E+01

f27 3.6139E+02 ± 2.8680E+01 + 3.8075E+02 ± 3.0314E+01

f28 2.2046E+03 ± 1.2589E+02 + 2.3056E+03 ± 5.3380E+01

f29 8.0594E+02 ± 1.4184E+02 ≈ 7.8984E+02 ± 7.7310E+01

f30 7.9206E+03 ± 9.5918E+02 + 8.3458E+03 ± 7.1453E+02

TABLE IX
SUMMARIZED STATITICAL TESTINGS INDICATE THAT THE iL-SHADE

ALGORITHM PERFORMED SIGNIFICANTLY BETTER (+), WORSE (−), OR
THE PERFORMANCE DIFFERENCE IS NOT STATISTICALLY SIGNIFICANT (≈)

COMPARED TO L-SHADE (WILCOXON RANK-SUM TEST AT THE 0.05
SIGNIFICANCE LEVEL).

iL-SHADE vs. L-SHADE + ≈ −

D = 10 10 15 5

D = 30 13 15 2

D = 50 17 10 3

D = 100 20 9 1

Table IX. If we compare a number of wins (+) and loses (−),
we can see that iL-SHADE indicates the better performance on
all dimensions. There were 120 test functions (30 benchmark
functions in each dimensions), L-SHADE preformed better
than iL-SHADE in 11 cases, while iL-SHADE wins 60 cases,
and the performance difference is not statistically significant



TABLE X
ALGORITHM COMPLEXITY

T0 [s] T1 [s] T̂2 [s] (T̂2 − T1)/T0

D = 10

0.0401

0.1407 0.2619 3.0224

D = 30 0.6888 0.9112 5.5461

D = 50 1.7172 2.0374 7.9850

D = 100 6.1493 6.6342 12.0923

in 49 cases.
Table X presents the L-SHADE algorithm complexity.

V. CONCLUSIONS

In this paper we presented the iL-SHADE algorithm. The
performance of the algorithm was evaluated on the set of
benchmark functions provided for CEC 2014 special session
on single-objective real-parameter optimization.

The experimental results give evidence that the iL-SHADE
algorithm is highly competitive when comparing to the well-
known L-SHADE algorithm on 30 benchmark functions with
D = 10, 30, 50 and 100 dimensions.

Recently, several DE-based works are related to changing
the population size during optimization process, but there are
still no general guidelines how to set the population size
parameter at the beginning of optimization process, when to
change it, either to increase or decrease it, etc. For future
research we plan to apply cooperative co-evolution methods
to the iL-SHADE algorithm.
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