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Abstract—Solving single objective real-parameter optimization
problems, also known as a bound-constrained optimization,
is still a challenging task. We can find such problems in
engineering optimization, scientific applications, and in other
real-world problems. Usually, these problems are very complex
and computationally expensive. A new algorithm, called jSO, is
presented in this paper. The algorithm is an improved variant of
the iL-SHADE algorithm, mainly with a new weighted version
of mutation strategy. The experiments were performed on CEC
2017 benchmark functions, which are different from previous
competition benchmark functions. A comparison of the proposed
jSO algorithm and the L-SHADE algorithm is presented first.
From the obtained results we can conclude that jSO performs
better in comparison with the L-SHADE algorithm. Next, a
comparison of jSO and iL-SHADE is also performed, and jSO
obtained better or competitive results. Using the CEC 2017
evaluation method, jSO obtained the best final score among these
three algorithms.

I. INTRODUCTION

Single-objective real parameter optimization plays impor-
tant role in various researches, where increasing efforts are
focused on solving complex optimization problems. Several
algorithms have been investigated for solving real-parameter
problems, and among them, the population based algorithms
seem very useful since they are quite simple to implement
in any programming language. Recently, we can find two
groups of population based algorithms: evolutionary algo-
rithms (EAs), and the group of algorithms inspired by nature,
such as bees, ants, or immune systems. In this paper, we are
dealing with evolutionary algorithms.

One of the biggest drawbacks of evolutionary algorithms
is the loss of diversity in the population. As consequence,
an algorithm might show a premature convergence into local
optima. A good algorithm needs to apply a population diversity
at sufficient high level in early stages of the evolutionary
process, while in later stages the algorithm needs to reduce
the population diversity in order to increase convergence rate.

We can define the single objective global optimization,
called also a bound-constrained optimization, as follows. For
an objective function f(~x), an algorithm needs to find variables
of vector ~x, which minimizes/maximizes f(~x). A number
of variables, D, in vector ~x = {x1, x2, ..., xD} denotes the
dimensionality of the problem. A search space is determined
by domains of the variables, i.e. it is defined by their lower and

upper bounds, xj,low and xj,upp for j = 1, 2, ..., D. In black-
box optimization, the task is to solve a global optimization
problem without explicit knowledge of the form or structure of
the objective function, i.e., f is a black box [1]. Such problems
arise in engineering optimization, scientific applications, and
in other real-world optimization problems.

Single objective optimization can be included in many
other types of optimization, like constrained optimization,
multi-modal optimization, multi-objective optimization, etc.
However, each type of optimization has some challenges. In
a single objective optimization, function f might have several
optima and an algorithm is required to find the global one.
If an algorithm traps its population into a local optimum, the
final result of optimization may be poor. Next challenge is
regarding the dimensionality of an optimization problem, since
the search space is becoming very huge when the dimension
of problem is increased.

The Differential Evolution (DE) [2] algorithm is a stochastic
population based EA used for numerical optimization. The DE
algorithm is simple for implementation. In recent decades, it
has shown robustness, efficiency, and it was very competitive
when it was applied to solve real-world optimization prob-
lems [3], [4]. DE is suitable especially for optimization over
continuous spaces, and, moreover, it might be used also in
discrete domains.

The original DE was proposed in 1995, and till now many
researches used the original algorithm or improved variants in
very different applications. A huge number of improvements
were proposed recently [5].

In this paper, we present a new version of DE algorithm
(jSO). It is similar to our previously published algorithm, iL-
SHADE [7], which was on the third/fourth place on CEC 2016
competition on single objective real-parameter optimization.
The iL-SHADE algorithm is an improved version of the L-
SHADE algorithm proposed by Tanabe and Fukunaga [6].

A quick look to a history of real-parameter single objective
optimization competitions and/or special sessions, tell us that
they were organized at CEC in 2005, 2013, 2014, 2015 and
2016. Closely related sessions/competitions such as large-scale
global optimization, etc., have been also organized at CEC,
and other conferences. Note, that benchmark functions of
CEC 2016 and CEC 2017 are different, while the number of
benchmark functions is equal in both competitions. Therefore,
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we may not directly compare obtained results for this and
previous CEC competitions.

The main contributions of this paper are: (1) A new version
of algorithm (jSO) with a weighted variant of mutation strategy
is presented, (2) Experiments for CEC 2017 competition are
conducted, (3) A detailed comparison of jSO versus L-SHADE
is given, and (4) A summary comparison of jSO, iL-SHADE,
and L-SHADE is presented.

The structure of the paper is as follows. Section II gives
background for this work, where an overview of DE, and a
description of the L-SHADE and iL-SHADE algorithms are
given. Section III presents our new variant of the algorithm,
called jSO, which is used in these experiments. In Section IV
experimental results of the jSO algorithm on benchmark
functions are presented, and comparison with L-SHADE and
iL-SHADE is given. Section V concludes the paper with some
final remarks.

II. BACKGROUND

In this section, we give some backgrounds of DE and related
algorithms. Differential evolution (DE) is population based
algorithm that belongs to the group of evolutionary algorithms.
We can find out that DE shows excellent performance and
it is applied in many applications and researches [8], [9],
[10], [11], [12], [13]. DE has three control parameters that are
required to be set by a user before the evolutionary process
starts: F is scaling factor, CR is crossover control parameter,
and NP is population size. They are fixed in the original DE
algorithm. Although, a user needs to set three parameters, it
might be a time consuming task to find good values for them.
To overcome this issue, several adaptive and self-adaptive
DE variants have been proposed. Control parameters F and
CR are self-adaptive in SADE [14], jDE [15], JADE [16],
etc., and, therefore, the user does not need to set and tune
these two control parameters, while the user needs to set NP .
Usually, NP remains fixed during the optimization process.
Recently, there have been several attempts to adjust this control
parameter during the evolutionary process [6], [17].

SHADE [1] is DE-based algorithm which uses success-
history based parameter adaptation for CR and F . The Linear
Population Size Reduction (LPSR), which continually de-
creases the population size according to a linear function,
was applied into SHADE and the obtained algorithm is called
L-SHADE [6]. The SHADE and L-SHADE algorithms have
inspired many researches. Improved versions of L-SHADE
have been placed on top ranks at CEC 2015 competition:
SPS-L-SHADE-EIG [18], DEsPA [19], LSHADE-ND [20],
also at CEC 2016: LSHADE EpSin [21] (an ensemble sinu-
soidal parameter adaptation is incorporated with L-SHADE),
LSHADE44 [22] (L-SHADE with competing strategies), and
iL-SHADE [7].

A. Differential Evolution

The DE algorithm [2] is a population based algorithm. Its
population P is combined of NP vectors:

Pg = (~x1,g, . . . , ~xi,g, . . . , ~xNP,g), i = 1, 2, ...,NP ,

where g denotes a generation index, g = 1, 2, . . . , GMAX .
Each vector consists of D variables:

~xi,g = (xi,1,g, xi,2,g, ..., xi,D,g).

A randomly initialized population of NP vectors is evolved
throughout GMAX generations guiding the vectors in a search
space toward to a global optimum. At the end of the evolu-
tionary process, i.e. after GMAX generations, DE stops and
returns the best fitted vector as the final solution.

During each generation DE employs three operations for
each individual, namely mutation, crossover and selection.

Mutation: A mutant vector ~vi,g is created using one of
the mutation strategies. The ’DE/rand/1’ mutation strategy has
been introduced in the original DE algorithm [2] and it is
one of the most used mutation strategy in DE. This strategy
randomly selects two vectors and their difference multiplied
by scale factor f is added to third randomly selected vector.
We can express this strategy as follows:

~vi,g = ~xr1,g + F · (~xr2,g − ~xr3,g),

where r1, r2, and r3 are indexes within a set of {1,NP}.
The indexes are randomly chosen in such a way that they are
pairwise different and also different from index i:

r1 6= r2 6= r3 6= i.

The other DE mutation strategies are:

• ”DE/best/1”: ~vi,g = ~xbest,g + F (~xr1,g − ~xr2,g),

• ”DE/current to best/1”:
~vi,g = ~xi,g + F (~xbest,g − ~xi,g) + F (~xr1,g − ~xr2,g),

• ”DE/best/2”:
~vi,g = ~xbest,g + F (~xr1,g − ~xr2,g) + F (~xr3,g − ~xr4,g),

• ”DE/rand/2”:
~vi,g = ~xr1,g + F (~xr2,g − ~xr3,g) + F (~xr4,g − ~xr5,g),

where the indexes r1–r5 represent the random and mutually
different integers generated within the range {1,NP} and also
different from index i. ~xbest is the best vector in a current
generation. Each strategy has a different ability to maintain
the population diversity which might increase/decrease con-
vergence rate during evolutionary process. A reader is referred
to the DE surveys [3], [4], [5].

Crossover: A mutant vector ~vi,g generated by one of the
mutation strategies is used in next operation, called crossover.
Binomial crossover is widely used in DE, the other crossover
is exponential [2], [3]. The former creates a trial vector ~ui,g

as follows:

ui,j,g =

{
vi,j,g, if rand(0, 1) ≤ CR or j = jrand,

xi,j,g, otherwise,

for i = 1, 2, ...,NP and j = 1, 2, ..., D. CR ∈ [0, 1] is
crossover parameter and presents the probability of creating
components for a trial vector from a mutant vector. If a
component was not selected from the mutant vector, then it
is taken from the parent vector ~xi,g . Randomly chosen index



1: g ← 1; Archive A← ∅
2: Initialize population Pg = (~xi,g, . . . , ~xNP,g) randomly
3: Set all values in MF to 0.5; ⇐=
4: Set all values in MCR to 0.8
5: k ← 1 // index counter
6: while the termination criatera are not meet do
7: SCR ← ∅, SF ← ∅
8: for i = 1 to NP do
9: ri ← select from [1, H] randomly

10: if ri = H then
11: MF ,ri ← 0.9
12: MCR,ri ← 0.9
13: end if
14: if MCR,ri < 0 then
15: CRi,g ← 0
16: else
17: CRi,g ← Ni(MCR,ri , 0.1)
18: end if
19: if g < 0.25GMAX then
20: CRi,g ← max(CRi,g, 0.7) ⇐=
21: else if g < 0.5GMAX then
22: CRi,g ← max(CRi,g, 0.6 ⇐=
23: end if
24: Fi,g ← Ci(MF ,ri , 0.1)
25: if g < 0.6GMAX and Fi,g > 0.7 then ⇐=
26: Fi,g ← 0.7 ⇐=
27: end if
28: ~ui,g ← current-to-pBest-w/1/bin using Eq. (3) ⇐=
29: end for
30: for i = 1 to NP do
31: if f(~ui,g) ≤ f(~xi,g) then
32: ~xi,g+1 ← ~ui,g

33: else
34: ~xi,g+1 ← ~xi,g

35: end if
36: if f(~ui,g) < f(~xi,g) then
37: ~xi,g → A,CRi,g → SCR,Fi,g → SF

38: end if
39: Shrink A, if necessary
40: Update MCR and MF

41: Apply LPSR strategy // linear population size reduction
42: Update p using Eq. (1)
43: end for
44: g ← g + 1

45: end while
Algorithm 1: jSO algorithm

jrand ∈ {1, 2, ...,NP} is responsible for the trial vector to
contain at least one component from the mutant vector.

If some variables from the trial vector are out of bounds, a
repeat mechanism is applied.

Selection: After crossover operation, the trial vector is
evaluated – an objective function f(~ui,g) is calculated. Then
selection operation compares two vectors, population vector
~xi,g and its corresponding trial vector ~ui,g , according to their
objective function values. The better vector will become a
member of the next generation. The selection operation for
a minimization optimization problem is defined as follow:

~xi,g+1 =

{
~ui,g, if f(~ui,g) ≤ f(~xi,g),

~xi,g, otherwise.

This selection operation is greedy and it is known for DE,

TABLE I
THE RESULTS OF THE jSO ALGORITHM FOR D = 10.

Best Worst Median Mean Std.

f1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f4 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f5 0.0000E+00 2.9849E+00 1.9899E+00 1.7558E+00 7.6004E–01

f6 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f7 1.0746E+01 1.3537E+01 1.1750E+01 1.1792E+01 6.0675E–01

f8 0.0000E+00 2.9849E+00 1.9899E+00 1.9509E+00 7.4352E–01

f9 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f10 1.8736E–01 2.4416E+02 1.0307E+01 3.5897E+01 5.5477E+01

f11 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f12 0.0000E+00 1.2015E+02 4.1629E–01 2.6621E+00 1.6782E+01

f13 0.0000E+00 5.9511E+00 4.8371E+00 2.9644E+00 2.3534E+00

f14 0.0000E+00 9.9496E–01 0.0000E+00 5.8527E–02 2.3644E–01

f15 4.8541E–05 5.0000E–01 1.7917E–01 2.2084E–01 2.0044E–01

f16 2.4800E–02 1.1402E+00 5.1923E–01 5.6884E–01 2.6440E–01

f17 1.9759E–02 1.4526E+00 4.0314E–01 5.0227E–01 3.4807E–01

f18 2.6385E–06 5.0000E–01 3.7898E–01 3.0800E–01 1.9514E–01

f19 0.0000E+00 3.9161E–02 0.0000E+00 1.0703E–02 1.2543E–02

f20 0.0000E+00 6.2435E–01 3.1217E–01 3.4278E–01 1.2879E–01

f21 1.0000E+02 2.0437E+02 1.0000E+02 1.3238E+02 4.8365E+01

f22 1.0000E+02 1.0000E+02 1.0000E+02 1.0000E+02 0.0000E+00

f23 3.0000E+02 3.0587E+02 3.0000E+02 3.0121E+02 1.5897E+00

f24 1.0000E+02 3.3133E+02 3.2859E+02 2.9660E+02 7.9323E+01

f25 3.9774E+02 4.4338E+02 3.9801E+02 4.0596E+02 1.7478E+01

f26 3.0000E+02 3.0000E+02 3.0000E+02 3.0000E+02 0.0000E+00

f27 3.8901E+02 3.8952E+02 3.8952E+02 3.8939E+02 2.2556E–01

f28 3.0000E+02 6.1182E+02 3.0000E+02 3.3908E+02 9.6547E+01

f29 2.2903E+02 2.4162E+02 2.3318E+02 2.3420E+02 2.9559E+00

f30 3.9450E+02 3.9469E+02 3.9450E+02 3.9452E+02 4.4991E–02

but rarely applied in other EAs.

B. L-SHADE and iL-SHADE Algorithms

In this section L-SHADE [6] and iL-SHADE are presented
briefly.

The L-SHADE [6] algorithm extends the Success-History
based Adaptive DE (SHADE) [1] algorithm with the Linear
Population Size Reduction mechanism (LPSR), which after
each generation decreases the population size according to a
linear function. L-SHADE has been the best ranked DE-based
algorithm on CEC 2014 Competition on Real-Parameter Sin-
gle Objective Optimization. If we look to a history on how an
algorithm was inspired by its predecessor, we can see a close
relation of the following algorithms: JADE [16], SHADE [1],
L-SHADE [6]. Later, several other JADE/(L)SHADE-based
algorithms have been proposed.

L-SHADE applies current-to-pBest/1/bin strategy to generate
a trial vector, weighted Lehmer mean, meanWL, in order to
make F , CR control parameters self-adaptive. A historical



TABLE II
THE RESULTS OF THE jSO ALGORITHM FOR D = 30.

Best Worst Median Mean Std.

f1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f4 5.8562E+01 6.4117E+01 5.8562E+01 5.8670E+01 7.7797E–01

f5 3.9798E+00 1.3249E+01 8.0168E+00 8.5568E+00 2.0980E+00

f6 0.0000E+00 1.3687E–07 0.0000E+00 6.0385E–09 2.7122E–08

f7 3.6115E+01 4.3093E+01 3.9064E+01 3.8927E+01 1.4594E+00

f8 4.9748E+00 1.2970E+01 8.9557E+00 9.0918E+00 1.8399E+00

f9 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f10 1.0391E+03 2.0415E+03 1.4931E+03 1.5277E+03 2.7716E+02

f11 0.0000E+00 9.1925E+00 1.9899E+00 3.0375E+00 2.6464E+00

f12 3.8638E+00 4.5480E+02 1.3889E+02 1.7038E+02 1.0194E+02

f13 9.9304E–01 2.2459E+01 1.5868E+01 1.4840E+01 4.8312E+00

f14 2.0061E+01 2.4621E+01 2.1245E+01 2.1834E+01 1.2458E+00

f15 3.2488E–01 2.7370E+00 7.7939E–01 1.0879E+00 6.9133E–01

f16 4.0180E+00 2.8350E+02 2.5930E+01 7.8923E+01 8.4769E+01

f17 1.1626E+01 4.7555E+01 3.4588E+01 3.2925E+01 8.0767E+00

f18 4.8587E–01 2.1754E+01 2.0650E+01 2.0411E+01 2.8726E+00

f19 2.0677E+00 1.0861E+01 4.0853E+00 4.5031E+00 1.7323E+00

f20 1.3673E+01 4.1526E+01 2.9302E+01 2.9368E+01 5.8548E+00

f21 2.0507E+02 2.1519E+02 2.0945E+02 2.0929E+02 1.9554E+00

f22 1.0000E+02 1.0000E+02 1.0000E+02 1.0000E+02 0.0000E+00

f23 3.4228E+02 3.6137E+02 3.5050E+02 3.5075E+02 3.2992E+00

f24 4.2196E+02 4.3200E+02 4.2668E+02 4.2646E+02 2.4662E+00

f25 3.8669E+02 3.8672E+02 3.8670E+02 3.8670E+02 7.6811E–03

f26 8.3924E+02 1.0341E+03 9.3040E+02 9.2021E+02 4.2954E+01

f27 4.8203E+02 5.1195E+02 4.9468E+02 4.9739E+02 7.0017E+00

f28 3.0000E+02 4.1398E+02 3.0000E+02 3.0873E+02 3.0250E+01

f29 3.5669E+02 4.5264E+02 4.3313E+02 4.3367E+02 1.3641E+01

f30 1.9550E+03 2.0751E+03 1.9705E+03 1.9712E+03 1.8961E+01

memory has H entries (|MF | = |MCR| = H). All three con-
trol parameters remain fixed during the evolutionary process
in the original DE algorithm [2], while L-SHADE self-adapts
scale factor and crossover parameters (F and CR), and shrinks
population size (NP ) during the evolutionary process.

The iL-SHADE [7] algorithm is an extended version of the
L-SHADE algorithm.

Let us summarize the main features that were proposed in
the iL-SHADE [7] algorithm:

1) Higher values for CR control parameter are being prop-
agated during the optimization process in the following
ways:

• all historical memory values in MCR are initialized
to 0.8 (in L-SHADE it is set to 0.5),

• one historical memory entry (the last one in our
case, see Lines 10–13 in Algorithm 1) is set as
follows: MCR,H = 0.9 and MF ,H = 0.9, and these
values remain unchanged during the evolutionary
process. In such a way not only a higher value for

TABLE III
THE RESULTS OF THE jSO ALGORITHM FOR D = 50.

Best Worst Median Mean Std.

f1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f4 1.3178E–04 1.4231E+02 2.8513E+01 5.6213E+01 4.8763E+01

f5 8.9606E+00 2.3886E+01 1.6197E+01 1.6405E+01 3.4620E+00

f6 0.0000E+00 1.7090E–05 3.1068E–07 1.0933E–06 2.6259E–06

f7 5.7519E+01 7.4153E+01 6.6640E+01 6.6497E+01 3.4728E+00

f8 9.9506E+00 2.4053E+01 1.6967E+01 1.6962E+01 3.1354E+00

f9 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f10 2.4048E+03 3.7919E+03 3.2324E+03 3.1398E+03 3.6716E+02

f11 2.1250E+01 3.2211E+01 2.8521E+01 2.7939E+01 3.3284E+00

f12 7.5193E+02 3.0634E+03 1.6533E+03 1.6806E+03 5.2293E+02

f13 4.5847E+00 1.1090E+02 3.7258E+01 3.0599E+01 2.1226E+01

f14 2.0302E+01 2.9662E+01 2.4351E+01 2.4964E+01 1.8734E+00

f15 1.8879E+01 2.8866E+01 2.3420E+01 2.3864E+01 2.4882E+00

f16 1.3473E+02 6.8420E+02 4.7725E+02 4.5052E+02 1.3775E+02

f17 8.5431E+01 4.7697E+02 2.5993E+02 2.8287E+02 8.6142E+01

f18 2.0531E+01 2.9161E+01 2.3874E+01 2.4283E+01 2.0174E+00

f19 1.0385E+01 1.9934E+01 1.3858E+01 1.4139E+01 2.2622E+00

f20 5.1191E+01 3.1793E+02 1.1326E+02 1.4010E+02 7.7375E+01

f21 2.1174E+02 2.2919E+02 2.1918E+02 2.1920E+02 3.7656E+00

f22 1.0000E+02 4.1136E+03 1.0000E+02 1.4872E+03 1.7531E+03

f23 4.1011E+02 4.4029E+02 4.2975E+02 4.3008E+02 6.2364E+00

f24 4.9957E+02 5.1700E+02 5.0728E+02 5.0745E+02 4.1273E+00

f25 4.7735E+02 4.9186E+02 4.8024E+02 4.8088E+02 2.7999E+00

f26 9.6631E+02 1.2556E+03 1.1329E+03 1.1288E+03 5.6167E+01

f27 4.7698E+02 5.3866E+02 5.1250E+02 5.1127E+02 1.1077E+01

f28 4.5885E+02 5.0769E+02 4.5885E+02 4.5981E+02 6.8398E+00

f29 3.2871E+02 3.8576E+02 3.6363E+02 3.6294E+02 1.3157E+01

f30 5.7941E+05 7.2365E+05 5.9048E+05 6.0105E+05 2.9859E+04

CRi is used more often, but also a higher Fi in
a pair. A trial vector has a higher probability of
creating components from a mutant vector, if CR
value is higher.

2) Memory update mechanism stores historical memory
values MCR and MF of current generation, say g, and
uses them weighted equally with the weighted Lehmer
means to calculate the historical memory values for the
next generation, g + 1.

3) Very high values of F and low values of CR are not
allowed in an early stage of evolutionary process.

4) After each generation g, p value for current-to-pBest/1
mutation in the next generation, g + 1, is computed as
follows:

p = (
pmax − pmin

max nfes
) · nfes + pmin, (1)

where nfes is the current number of objective function
evaluations, and max nfes is the maximum number of
objective function evaluations.



TABLE IV
THE RESULTS OF THE jSO ALGORITHM FOR D = 100.

Best Worst Median Mean Std.

f1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f2 0.0000E+00 1.2181E+02 4.6953E–07 8.9403E+00 2.4202E+01

f3 6.4494E–08 1.5008E–05 1.4482E–06 2.3912E–06 2.7250E–06

f4 8.4524E+01 2.2075E+02 1.9538E+02 1.8963E+02 2.8923E+01

f5 3.0099E+01 6.0038E+01 4.4049E+01 4.3908E+01 5.6066E+00

f6 7.6730E–06 3.5617E–03 3.5717E–05 2.0244E–04 6.1988E–04

f7 1.2880E+02 1.5961E+02 1.4425E+02 1.4490E+02 6.7030E+00

f8 2.7260E+01 5.4642E+01 4.2250E+01 4.2152E+01 5.5223E+00

f9 0.0000E+00 5.4385E–01 0.0000E+00 4.5904E–02 1.1493E–01

f10 7.5410E+03 1.1012E+04 9.7507E+03 9.7044E+03 6.8161E+02

f11 4.2724E+01 3.0408E+02 1.0424E+02 1.1317E+02 4.3204E+01

f12 6.1741E+03 3.9130E+04 1.7035E+04 1.8430E+04 8.3505E+03

f13 5.3265E+01 2.5094E+02 1.3958E+02 1.4489E+02 3.8005E+01

f14 4.4073E+01 9.4700E+01 6.3850E+01 6.4341E+01 1.0895E+01

f15 8.6693E+01 2.6150E+02 1.6468E+02 1.6212E+02 3.8054E+01

f16 1.0308E+03 2.4115E+03 1.8817E+03 1.8586E+03 3.4855E+02

f17 6.7483E+02 1.8579E+03 1.2732E+03 1.2780E+03 2.3843E+02

f18 1.0143E+02 2.7887E+02 1.5693E+02 1.6728E+02 3.6499E+01

f19 6.2057E+01 1.5110E+02 1.0635E+02 1.0487E+02 2.0079E+01

f20 6.3020E+02 1.7713E+03 1.3810E+03 1.3760E+03 2.4281E+02

f21 2.4580E+02 2.7964E+02 2.6356E+02 2.6380E+02 6.4286E+00

f22 1.0000E+02 1.1922E+04 1.0662E+04 1.0210E+04 2.1824E+03

f23 5.4323E+02 5.9377E+02 5.7119E+02 5.7115E+02 1.0702E+01

f24 8.8256E+02 9.2249E+02 9.0261E+02 9.0218E+02 7.8932E+00

f25 6.3863E+02 7.7372E+02 7.6163E+02 7.3609E+02 3.5302E+01

f26 3.1188E+03 3.4201E+03 3.2811E+03 3.2673E+03 8.0192E+01

f27 5.3852E+02 6.3018E+02 5.8646E+02 5.8547E+02 2.1672E+01

f28 4.7819E+02 5.7686E+02 5.2367E+02 5.2682E+02 2.7305E+01

f29 8.8939E+02 1.6464E+03 1.2379E+03 1.2566E+03 1.9133E+02

f30 2.1147E+03 2.6477E+03 2.3171E+03 2.3255E+03 1.1878E+02

In iL-SHADE, the current-to-pBest/1/bin strategy, external
archive, linear population size reduction, etc., have been kept
unchanged comparing to L-SHADE.

III. JSO – THE NEW VARIANT OF IL-SHADE

In this section, a new variant for solving single-objective
real parameter optimization is presented. We name it jSO
algorithm. The pseudo-code of the jSO algorithm is given
in Algorithm 1. It is extended version of the iL-SHADE [7]
algorithm. In Algorithm 1 we marked lines that are new or
changed in jSO with respect to the iL-SHADE algorithm with
⇐=.

L-SHADE and iL-SHADE apply DE/current-to-pBest/1 mu-
tation strategy to generate a trial vector:

~vi,g = ~xi,g + F (~xpBest,g − ~xi,g) + F (~xr1,g − ~xr2,g), (2)

while jSO uses a new weighted version of mutation strategy,
called DE/current-to-pBest-w/1, as follows:

~vi,g = ~xi,g + Fw(~xpBest,g − ~xi,g) + F (~xr1,g − ~xr2,g), (3)

TABLE V
COMPARISON OF RESULTS OBTAINED BY jSO AND L-SHADE FOR

D = 10. WILCOXON RANK-SUM TEST (α = 0.05).

jSO L-SHADE

f1 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f2 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f3 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f4 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f5 1.7558E+00 ± 7.5255E–01 + 2.5771E+00 ± 9.4834E–01

f6 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f7 1.1792E+01 ± 6.0077E–01 + 1.2112E+01 ± 6.7912E–01

f8 1.9509E+00 ± 7.3619E–01 + 2.3820E+00 ± 8.6048E–01

f9 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f10 3.5897E+01 ± 5.4930E+01 ≈ 3.8612E+01 ± 5.0024E+01

f11 0.0000E+00 ± 0.0000E+00 ≈ 2.0437E–02 ± 1.0237E–01

f12 2.6621E+00 ± 1.6617E+01 ≈ 3.3316E+01 ± 5.3716E+01

f13 2.9644E+00 ± 2.3302E+00 + 3.8807E+00 ± 2.3273E+00

f14 5.8527E–02 ± 2.3411E–01 + 7.7252E–01 ± 9.1909E–01

f15 2.2084E–01 ± 1.9847E–01 − 1.4988E–01 ± 1.8764E–01

f16 5.6884E–01 ± 2.6179E–01 − 3.8157E–01 ± 1.7650E–01

f17 5.0227E–01 ± 3.4464E–01 − 9.7528E–02 ± 1.2790E–01

f18 3.0800E–01 ± 1.9322E–01 − 2.1494E–01 ± 1.9689E–01

f19 1.0703E–02 ± 1.2420E–02 ≈ 7.2615E–03 ± 9.6949E–03

f20 3.4278E–01 ± 1.2752E–01 − 1.2242E–02 ± 6.0595E–02

f21 1.3238E+02 ± 4.7889E+01 + 1.4933E+02 ± 5.1474E+01

f22 1.0000E+02 ± 1.9886E–13 ≈ 9.8054E+01 ± 1.3867E+01

f23 3.0121E+02 ± 1.5740E+00 + 3.0336E+02 ± 1.4164E+00

f24 2.9660E+02 ± 7.8541E+01 + 2.9930E+02 ± 7.9484E+01

f25 4.0596E+02 ± 1.7306E+01 ≈ 4.0954E+02 ± 1.9770E+01

f26 3.0000E+02 ± 0.0000E+00 ≈ 3.0000E+02 ± 2.0137E–13

f27 3.8939E+02 ± 2.2333E–01 ≈ 3.8945E+02 ± 1.7635E–01

f28 3.3908E+02 ± 9.5596E+01 ≈ 3.2336E+02 ± 8.0154E+01

f29 2.3420E+02 ± 2.9268E+00 ≈ 2.3452E+02 ± 2.4230E+00

f30 3.9452E+02 ± 4.4548E–02 ≈ 4.0556E+02 ± 2.0754E+01

where Fw is calculated:

Fw =


0.7 ∗ F, nfes < 0.2max nfes,

0.8 ∗ F, nfes < 0.4max nfes,

1.2 ∗ F, otherwise.
(4)

The aim of the presented weighted mutation strategy is to
apply a smaller factor Fw to multiply difference of vectors
in which ~xpBest,g appears at early stages of the evolutionary
process, while in later stages higher factor Fw is used. With
factor Fw the vector ~xpBest,g might have a lower and/or higher
influence. The values in Eq. (4) and values in Lines 19–27 in
Algorithm 1 are set based on some additional experiments, but
without fine tuning of these values (parameters).

One can notice that changes and extensions from the iL-
SHADE to jSO are minors — the main features of iL-SHADE
remain unchanged. And also, the differences between iL-
SHADE and L-SHADE are not so big [7]. Therefore, we
will mostly focus ourself to compare the performance of jSO



TABLE VI
COMPARISON OF RESULTS OBTAINED BY jSO AND L-SHADE FOR

D = 30. WILCOXON RANK-SUM TEST (α = 0.05).

jSO L-SHADE

f1 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f2 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f3 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f4 5.8670E+01 ± 7.7031E–01 ≈ 5.8562E+01 ± 4.6102E–14

f5 8.5568E+00 ± 2.0773E+00 − 6.4115E+00 ± 1.4348E+00

f6 6.0385E–09 ± 2.6855E–08 ≈ 2.6769E–08 ± 1.5290E–07

f7 3.8927E+01 ± 1.4450E+00 − 3.7258E+01 ± 1.2796E+00

f8 9.0918E+00 ± 1.8218E+00 − 7.1456E+00 ± 1.5779E+00

f9 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f10 1.5277E+03 ± 2.7443E+02 ≈ 1.5002E+03 ± 1.7337E+02

f11 3.0375E+00 ± 2.6203E+00 + 1.9481E+01 ± 2.4305E+01

f12 1.7038E+02 ± 1.0093E+02 + 1.0099E+03 ± 3.8554E+02

f13 1.4840E+01 ± 4.7836E+00 + 1.6063E+01 ± 4.9664E+00

f14 2.1834E+01 ± 1.2336E+00 ≈ 2.0091E+01 ± 5.8358E+00

f15 1.0879E+00 ± 6.8452E–01 + 3.2152E+00 ± 1.3212E+00

f16 7.8923E+01 ± 8.3934E+01 ≈ 4.1378E+01 ± 3.4814E+01

f17 3.2925E+01 ± 7.9971E+00 ≈ 3.2355E+01 ± 5.9758E+00

f18 2.0411E+01 ± 2.8443E+00 + 2.1232E+01 ± 4.2028E+00

f19 4.5031E+00 ± 1.7152E+00 + 5.2171E+00 ± 1.7886E+00

f20 2.9368E+01 ± 5.7971E+00 ≈ 3.0451E+01 ± 5.5810E+00

f21 2.0929E+02 ± 1.9362E+00 − 2.0743E+02 ± 1.8419E+00

f22 1.0000E+02 ± 2.8422E–14 ≈ 1.0000E+02 ± 9.1103E–14

f23 3.5075E+02 ± 3.2667E+00 ≈ 3.5154E+02 ± 2.2484E+00

f24 4.2646E+02 ± 2.4419E+00 + 4.2746E+02 ± 1.7486E+00

f25 3.8670E+02 ± 7.6056E–03 + 3.8674E+02 ± 2.9143E–02

f26 9.2021E+02 ± 4.2530E+01 + 9.5137E+02 ± 3.7879E+01

f27 4.9739E+02 ± 6.9327E+00 + 5.0482E+02 ± 4.9047E+00

f28 3.0873E+02 ± 2.9952E+01 + 3.3119E+02 ± 5.1065E+01

f29 4.3367E+02 ± 1.3507E+01 ≈ 4.3424E+02 ± 6.8313E+00

f30 1.9712E+03 ± 1.8774E+01 ≈ 1.9962E+03 ± 5.2424E+01

against L-SHADE in the next section, where we will also give
summary results for all three algorithms.

IV. EXPERIMENTS

A. Evaluation Method

The CEC 2017 evaluation method combines two scores,
defined in Eqs. (6) and (7), to find the final score as follows:

score = score1 + score2 , (5)

where

score1 = (1− SE − SEmin

SE
)× 50, (6)

Here, SEmin is the minimal sum of errors from all the algo-
rithms, and SE is the sum of error values for all dimensions
and it is defined as follows:

SE = 0.1×
30∑
i=1

ef 10D + 0.2×
30∑
i=1

ef 30D+

TABLE VII
COMPARISON OF RESULTS OBTAINED BY jSO AND L-SHADE FOR

D = 50. WILCOXON RANK-SUM TEST (α = 0.05).

jSO L-SHADE

f1 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f2 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f3 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f4 5.6213E+01 ± 4.8283E+01 ≈ 6.5558E+01 ± 5.3265E+01

f5 1.6405E+01 ± 3.4279E+00 − 1.1388E+01 ± 2.1956E+00

f6 1.0933E–06 ± 2.6000E–06 ≈ 5.7767E–07 ± 1.2877E–06

f7 6.6497E+01 ± 3.4386E+00 − 6.3121E+01 ± 1.7759E+00

f8 1.6962E+01 ± 3.1045E+00 − 1.2136E+01 ± 2.3341E+00

f9 0.0000E+00 ± 0.0000E+00 ≈ 3.5109E–03 ± 1.7378E–02

f10 3.1398E+03 ± 3.6355E+02 ≈ 3.0618E+03 ± 3.4632E+02

f11 2.7939E+01 ± 3.2957E+00 + 4.7502E+01 ± 8.5254E+00

f12 1.6806E+03 ± 5.1777E+02 + 2.2440E+03 ± 5.2256E+02

f13 3.0599E+01 ± 2.1017E+01 + 6.4106E+01 ± 2.6464E+01

f14 2.4964E+01 ± 1.8549E+00 + 2.9408E+01 ± 3.0627E+00

f15 2.3864E+01 ± 2.4637E+00 + 4.0013E+01 ± 1.0250E+01

f16 4.5052E+02 ± 1.3640E+02 − 3.7092E+02 ± 1.2054E+02

f17 2.8287E+02 ± 8.5293E+01 ≈ 2.5170E+02 ± 6.2340E+01

f18 2.4283E+01 ± 1.9975E+00 + 3.9158E+01 ± 1.1973E+01

f19 1.4139E+01 ± 2.2400E+00 + 2.2502E+01 ± 4.0896E+00

f20 1.4010E+02 ± 7.6613E+01 + 1.4484E+02 ± 5.1325E+01

f21 2.1920E+02 ± 3.7285E+00 − 2.1269E+02 ± 2.7543E+00

f22 1.4872E+03 ± 1.7358E+03 + 2.0199E+03 ± 1.8063E+03

f23 4.3008E+02 ± 6.1750E+00 ≈ 4.3123E+02 ± 3.8170E+00

f24 5.0745E+02 ± 4.0866E+00 + 5.0999E+02 ± 2.1847E+00

f25 4.8088E+02 ± 2.7723E+00 + 4.8270E+02 ± 4.7639E+00

f26 1.1288E+03 ± 5.5614E+01 + 1.1717E+03 ± 4.5168E+01

f27 5.1127E+02 ± 1.0967E+01 + 5.3658E+02 ± 1.6632E+01

f28 4.5981E+02 ± 6.7724E+00 + 4.7768E+02 ± 2.3496E+01

f29 3.6294E+02 ± 1.3027E+01 − 3.4878E+02 ± 9.7912E+00

f30 6.0105E+05 ± 2.9565E+04 + 6.5897E+05 ± 9.7172E+04

+0.3×
30∑
i=1

ef 50D + 0.4×
30∑
i=1

ef 100D,

where ef is the error values for all the functions.
Then

score2 = (1− SR − SRmin

SR
)× 50, (7)

where SRmin is the minimal sum of ranks from all the
algorithms, and SR is the sum of ranks defined as follows:

SR = 0.1×
30∑
i=1

rank10D + 0.2×
30∑
i=1

rank30D+

+0.3×
30∑
i=1

rank50D + 0.4×
30∑
i=1

rank100D.

In the evaluation method, the higher weights are given for
higher dimensions.



TABLE VIII
COMPARISON OF RESULTS OBTAINED BY jSO AND L-SHADE FOR

D = 100. WILCOXON RANK-SUM TEST (α = 0.05).

jSO L-SHADE

f1 0.0000E+00 ± 0.0000E+00 ≈ 0.0000E+00 ± 0.0000E+00

f2 8.9403E+00 ± 2.3963E+01 + 3.7908E+05 ± 2.6144E+06

f3 2.3912E–06 ± 2.6981E–06 + 6.9016E–06 ± 6.7687E–06

f4 1.8963E+02 ± 2.8638E+01 ≈ 1.9658E+02 ± 4.6028E+00

f5 4.3908E+01 ± 5.5513E+00 − 3.6235E+01 ± 5.7543E+00

f6 2.0244E–04 ± 6.1377E–04 + 5.5323E–03 ± 3.1990E–03

f7 1.4490E+02 ± 6.6369E+00 − 1.4131E+02 ± 4.5655E+00

f8 4.2152E+01 ± 5.4679E+00 − 3.4373E+01 ± 5.1524E+00

f9 4.5904E–02 ± 1.1380E–01 + 4.8584E–01 ± 4.8318E–01

f10 9.7044E+03 ± 6.7490E+02 + 1.0507E+04 ± 4.6023E+02

f11 1.1317E+02 ± 4.2778E+01 + 4.5278E+02 ± 8.9427E+01

f12 1.8430E+04 ± 8.2682E+03 + 2.4887E+04 ± 9.8414E+03

f13 1.4489E+02 ± 3.7631E+01 + 5.7034E+02 ± 4.1447E+02

f14 6.4341E+01 ± 1.0787E+01 + 2.5141E+02 ± 2.9416E+01

f15 1.6212E+02 ± 3.7679E+01 + 2.5659E+02 ± 4.0180E+01

f16 1.8586E+03 ± 3.4512E+02 − 1.6579E+03 ± 2.7759E+02

f17 1.2780E+03 ± 2.3608E+02 − 1.1091E+03 ± 1.9942E+02

f18 1.6728E+02 ± 3.6139E+01 + 2.3964E+02 ± 6.4499E+01

f19 1.0487E+02 ± 1.9881E+01 + 1.7836E+02 ± 2.4235E+01

f20 1.3760E+03 ± 2.4042E+02 + 1.5003E+03 ± 1.9749E+02

f21 2.6380E+02 ± 6.3652E+00 − 2.5935E+02 ± 4.5604E+00

f22 1.0210E+04 ± 2.1609E+03 + 1.1286E+04 ± 5.6467E+02

f23 5.7115E+02 ± 1.0597E+01 − 5.6589E+02 ± 9.0198E+00

f24 9.0218E+02 ± 7.8155E+00 + 9.2037E+02 ± 6.7820E+00

f25 7.3609E+02 ± 3.4954E+01 + 7.5322E+02 ± 2.5773E+01

f26 3.2673E+03 ± 7.9402E+01 + 3.4296E+03 ± 8.3405E+01

f27 5.8547E+02 ± 2.1458E+01 + 6.4291E+02 ± 1.7035E+01

f28 5.2682E+02 ± 2.7036E+01 ≈ 5.2745E+02 ± 2.1404E+01

f29 1.2566E+03 ± 1.8945E+02 ≈ 1.2651E+03 ± 1.7645E+02

f30 2.3255E+03 ± 1.1761E+02 + 2.4067E+03 ± 1.5177E+02

B. Experimental Results

We tested the jSO algorithm on scalable benchmark func-
tions, provided for CEC 2017 special session [23]. The di-
mensions of benchmark functions in this special session are
D = 10, 30, 50 and 100. The values of the optimal solutions
are known in advance for all benchmark functions. An algo-
rithm needs to perform 51 runs for each function, the max-
imum number of objective function evaluations, max nfes
is D×10,000. There exists the source code of CEC 2017
benchmark functions, but an algorithm is required to use these
functions as a black-box, i.e., without explicit knowledge of
the structure of benchmark functions.

PC configuration:
System: GNU Linux, CPU: Intel(R) Core(TM) i7-4770 CPU
3.4 GHz, Main memory: 16 GB, Programming language: C++,
Algorithm: jSO, Compiler: g++ (GNU Compiler).

The parameters in jSO were kept unchanged according
to the parameters setting in the L-SHADE and iL-SHADE

algorithms, except the following parameters:
• current-to-pBest-w/1 mutation strategy (current-to-pBest/1

in L-SHADE and iL-SHADE),
• p value for mutation strategy linearly decreases from

pmax to pmin during the evolutionary process, where
pmax = 0.25 in jSO (pmax = 0.2 in iL-SHADE) and
pmin = pmax/2 (in L-SHADE p is fixed to 0.11)

• initial population size N init = 25 log(D)
√

(D) (in L-
SHADE it is set to 18D, while in iL-SHADE it is set to
12D),

• historical memory size H = 5 (H = 6 in L-SHADE and
iL-SHADE),

• MF values are initialized to 0.3 (0.5 in L-SHADE and
iL-SHADE).

The obtained results are presented in Tables I, II, III, and IV.
In these tables, error values f(~x)−f(~x∗), as required in [23],
are given. The error values between the best fitness values
found in each run out of 51 runs and true optimal value are
calculated and then best, worst, median, mean, and standard
deviation of the error values are presented in each column in
the tables.

Next, we compare the performance of the jSO and L-
SHADE algorithms. The results are given in Tables V, VI,
VII, and VIII for each dimension. In these tables the mean
and standard deviation values are shown for the jSO and L-
SHADE algorithms, and the statistical testing is also shown
in a separate column. The symbols +,−,≈ indicate that
the proposed jSO algorithm performed significantly better
(+), significantly worse (−), or the performance difference
is not statistically significant (≈) compared to the L-SHADE
algorithm based on the Wilcoxon rank-sum test at the 0.05
significance level.

TABLE IX
SUMMARIZED STATISTICAL TESTINGS INDICATE THAT THE jSO

ALGORITHM PERFORMED SIGNIFICANTLY BETTER (+), WORSE (−), OR
THE PERFORMANCE DIFFERENCE IS NOT STATISTICALLY SIGNIFICANT (≈)
COMPARED TO L-SHADE AND IL-SHADE, RESPECTIVELY (WILCOXON

RANK-SUM TEST AT THE 0.05 SIGNIFICANCE LEVEL).

jSO vs. L-SHADE + ≈ −

D = 10 8 17 5

D = 30 11 15 4

D = 50 15 9 6

D = 100 19 4 7

jSO vs. iL-SHADE + ≈ −
D = 10 7 19 4

D = 30 7 13 10

D = 50 13 7 10

D = 100 13 8 9

Summarized results of the statistical testing are presented
in Table IX. If we compare a number of wins (+) and loses
(−), we can see that jSO indicates the better performance than
L-SHADE and iL-SHADE on all dimensions, with only one
exception (iL-SHADE performed better than jSO on D = 30).
Superior performance of jSO is seen especially on D = 100.



TABLE X
SCORES OF EVALUATION METHOD FOR L-SHADE, IL-SHADE, AND

JSO.

L-SHADE iL-SHADE jSO

63.64 93.30 100.0

TABLE XI
ALGORITHM RUN-TIME COMPLEXITY OF THE JSO ALGORITHM

T0 [s] T1 [s] T̂2 [s] (T̂2 − T1)/T0

D = 10

0.0730
0.1661 0.2816 1.5822

D = 30 0.7579 0.9807 3.0520

D = 50 1.8472 2.1541 4.2041

Table X shows the obtained scores according to the evalua-
tion eethod, presented in Section IV-A. In this method, a higher
score is better. We can see that jSO obtained the highest score,
followed by iL-SHADE and L-SHADE.

Table XI presents the complexity of the jSO algorithm.
Notice, this complexity should be considered with some care,
since the measured values of run-time are very small.

V. CONCLUSIONS

Differential evolution based algorithms have shown a very
good performance on solving numerical optimization prob-
lems. In this paper, we present results of our algorithm (jSO)
on the set of benchmark functions provided for CEC 2017 spe-
cial session on single-objective real-parameter optimization.

In this work, we compared our jSO algorithm with the
L-SHADE and iL-SHADE algorithms. The jSO algorithm
indicates better overall results when comparing to the L-
SHADE and iL-SHADE algorithms on all dimensions, with
one exception only – iL-SHADE performed better than jSO
on D = 30. The jSO, iL-SHADE, and L-SHADE algorithms
obtained 100.0, 93.30, and 63.64 scores, respectively, accord-
ing to the CEC 2017 evaluation method, where higher score
is better.
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