
The 100-Digit Challenge: Algorithm jDE100
Janez Brest, Mirjam Sepesy Maučec, Borko Bošković

Faculty of Electrical Engineering and Computer Science
University of Maribor

Smetanova ul. 17, 2000 Maribor, Slovenia
Email: janez.brest@um.si, mirjam.sepesy@um.si, borko.boskovic@um.si

Abstract—Real parameter optimization problems are often
very complex and computationally expensive. We can find such
problems in engineering and scientific applications. In this paper,
a new algorithm is proposed to tackle the 100-Digit Challenge.
There are 10 functions representing 10 optimization problems,
and the goal is to compute each function’s minimum value
to 10 digits of accuracy. There is no limit on either time or
the maximum number of function evaluations. The proposed
algorithm is based on the self-adaptive differential evolution
algorithm jDE. Our algorithm uses two populations and some
other mechanisms when tackling the challenge. We provide the
score for each function as required by the organizers of this
challenge competition.

Index Terms—differential evolution, optimization, global opti-
mum, accuracy

I. INTRODUCTION

100-Digit Challenge [1] on CEC 2019 belongs to single-
objective real parameter optimization where the goal is to find
a global optimum. Single-objective real parameter optimiza-
tion plays an important role in various research fields, where
increasing efforts are focused on solving complex optimization
problems. Several algorithms have been investigated for solv-
ing real-parameter problems, and among them, the population
based algorithms seem very useful and robust. In this paper,
we are dealing with a differential evolution algorithm that
belongs to the group of evolutionary algorithms. A quick look
to a history of real-parameter single objective optimization
competitions and/or special sessions tells us that they were
first organized at CEC in 2005, and each year after 2013.

It is known that one of the biggest drawbacks of evolution-
ary algorithms, as well as other population-based algorithms,
like particle swarm optimization (PSO) algorithms, is the loss
of diversity in the population. As a consequence, an algorithm
might show a premature convergence into local optima.

In this paper, we will assume the optimization problems are
required to be minimized. However, a maximization problem
max(f(~x)) can be transformed into minimization variant as
−min(−f(~x)).

A goal in the global optimization problem is to find a
vector ~x, which minimizes objective function f(~x). Vector
~x = {x1, x2, ..., xD} consists of D variables, and each variable
xj (j = 1, 2, ..., D) is defined by its lower xj,low and upper
xj,upp bound. Therefore, we define a global optimization

The authors acknowledge the financial support from the Slovenian Research
Agency (research core funding No. P2-0041, and P2-0069).

problem also as bound-constrained optimization. D denotes
the dimensionality of the problem.

In a single objective optimization, function f might have
several optima and an algorithm is required to find the global
one. If an algorithm traps into a local optimum, the final
result of optimization may be poor [2]. Next challenge is
regarding the dimensionality of an optimization problem since
the search space is becoming very large when the dimension
of the problem is increased.

The Differential Evolution (DE) [3] algorithm is a stochastic
population-based algorithm. In recent decades, it was very
competitive when it was applied to solve real-world opti-
mization problems [4], [5]. DE demonstrates robustness and
efficiency, and it is suitable especially for optimization over
continuous spaces. However, we can use DE also in domains
of discrete optimization.

The original DE was proposed more than 20 years ago.
Till now researches used the original algorithm or improved
variants in their applications to solve problems in different
domains. A huge number of improvements were proposed re-
cently [6]. Further readings include recently published reviews
and surveys [7], [8], [9].

In this paper, we present a new version of DE algo-
rithm, called jDE100, for single objective real-parameter op-
timization. It is based on our previously published algorithm
jDE [10]. The main new features of the jDE100 algorithm
are as follows. It uses two populations. Lower and upper
limits of the control parameters are set differently compared to
original jDE. Additionally, it uses a simple one-way migration
of currently best individual among the populations. Next, the
proposed algorithm applies restart’s mechanism separately in
both populations to manage a population diversity.

The main contributions of this paper are: (1) A new version
of the algorithm (jDE100) with two populations is presented,
(2) Experiments for CEC 2019 competition on the 100-
Digit Challenge are conducted, (3) The obtained results are
presented in a form required by the competition organizers.

The structure of the paper is as follows. Section II gives
background for this work, where an overview of the DE and
jDE algorithms is presented. Section III proposes our new
algorithm, called jDE100, which is used for solving The 100-
Digit Challenge. In Section IV experimental results of the
jDE100 algorithm on problems of the challenge are presented.
Section V concludes the paper with some final remarks.

II. BACKGROUND

This section gives some backgrounds on DE and jDE.
Differential evolution (DE) is a population-based algorithm
that belongs to the group of evolutionary algorithms. It shows
highly competitive performance in many applications and re-
searches [11], [12], [13], [14], [15]. The original DE algorithm
has three control parameters, F , CR, and NP , that are required
to be set by the user before the evolutionary process starts: F
is a scaling factor, CR is crossover parameter, and NP is
population size. They are fixed in the original DE algorithm,
i.e., they have the same value during the whole evolutionary
process or optimization task. As it can be observed based
on researches, a particular parameter’s value can lead to a
faster algorithm’s convergence rate. If a user needs to set
and tune some parameters, it can take a while before a user
finds reasonably good values for parameters. To overcome this
issue, numerous adaptive and self-adaptive mechanisms for
control parameters have been proposed. Control parameters
F and CR are self-adaptive in many DE algorithms, like
SADE [16], jDE [10], JADE [17], LSHADE [18], jSO [2],
etc., and, therefore, a user does not need to tune these two
control parameters. However, it needs to set NP parameter.
Usually, NP remains fixed during the optimization process.
Recently, there have been several attempts to adjust this control
parameter during the evolutionary process [19], [18].

A. Differential Evolution

The DE algorithm [3] is a population based algorithm. Its
population P is combined of NP individuals or vectors:

Pg = (~x1,g, . . . , ~xi,g, . . . , ~xNP,g), i = 1, 2, ...,NP ,

where g denotes a generation index, g = 1, 2, . . . , GMAX .
DE stops an evolutionary process after GMAX generations.
The stopping criteria can be expressed also by the maximum
number of function evaluations, time limit, etc. Each vector

~xi,g = {xi,1,g, xi,2,g, ..., xi,D,g}

consists of D variables.
1) Initialization: Before the evolutionary process starts, a

population is randomly initialized, i.e., each vector gets ran-
domly generated uniformly distributed values between lower
and upper bound for all its components:

xi,j,0 = xj,low + rand() ∗ (xj,upp − xj,low).

Then the population of NP vectors is evolved and guides the
vectors in a search space toward a global optimum. At the end
of the evolutionary process, DE stops and returns the best-
fitted vector and its fitness value as the final solution.

During each generation, DE employs three operations for
each individual, namely mutation, crossover, and selection.

Mutation: A mutant vector ~vi,g+1 is created using one of
the mutation strategies. The ’DE/rand/1’ mutation strategy has
been introduced in the original DE algorithm [3] and it is one
of the most frequently used mutation strategy in DE. This
strategy randomly selects two vectors and their difference is

Require: P... population
Require: NP ... population size
Require: F ... scale factor
Require: CR ... crossover parameter
Ensure: ~xbest ... the best individual in the population
Ensure: f(~xbest) ... the value of the best individual

1: Initialization(P); . population initialization
2: while stopping criteria is not met do
3: for (i← 0; i < NP; i++) do

. ** mutation **
4: Randomly select r1, r2, and r3; . r1 6= r2 6= r3 6= i
5: ~vi,g+1 ← ~xr1 + F (~xr2 − ~xr3)

. ** crossover **
6: jrand ← rand{1, D}
7: for (j ← 0; j < D; j++) do
8: if (rand(0, 1) ≤ CR or j = jrand) then
9: ui,j,g+1 ← vi,j,g+1

10: else
11: ui,j,g+1 ← xi,j
12: end if
13: end for

. ** selection **
14: if (f(~ui,g+1) ≤ f(~xi,g)) then . minimization
15: ~xi,g+1 ← ~ui,g+1

16: else
17: ~xi,g+1 ← ~xi,g
18: end if
19: end for
20: end while

Algorithm 1: Differential Evolution.

multiplied by scale factor F and added to third randomly
selected vector:

~vi,g+1 = ~xr1,g + F · (~xr2,g − ~xr3,g),

where r1, r2, and r3 are randomly chosen indexes within a set
of {1, ...,NP}. They are pairwise different and also different
from index i:

r1 6= r2 6= r3 6= i.

The other widely used DE mutation strategies are [20], [21]:

• ”DE/best/1”: ~vi,g+1 = ~xbest + F (~xr1,g − ~xr2,g),

• ”DE/current to best/1”:
~vi,g+1 = ~xi,g + F (~xbest − ~xi,g) + F (~xr1,g − ~xr2,g),

• ”DE/best/2”:
~vi,g+1 = ~xbest + F (~xr1,g − ~xr2,g) + F (~xr3,g − ~xr4,g),

• ”DE/rand/2”:
~vi,g+1 = ~xr1,g + F (~xr2,g − ~xr3.g) + F (~xr4,g − ~xr5,g),

• ”DE/current-to-pBest/1:
~vi,g+1 = ~xi,g + F (~xpBest − ~xi,g) + F (~xr1,g − ~xr2,g),

where the indexes r1–r5 represent the random and mutually
different integers generated within the set {1, ...,NP} and also
different from index i. ~xbest is the best vector in a current
generation, while ~xpBest denotes one of the good individuals
from the top p% individuals.

TABLE I
SUMMARY OF THE FUNCTIONS IN THE 100-DIGIT CHALLENGE [1].

No. Functions F ∗
i = Fi(x

∗) D Search Range

1 Storn’s Chebyshev Polynomial Fitting Problem 1 9 [-8192,8192]

2 Inverse Hilbert Matrix Problem 1 16 [-16384,16384]

3 Lennard-Jones Minimum Energy Cluster 1 18 [-4,4]

4 Rastrigin’s Function 1 10 [-100,100]

5 Griewank’s Function 1 10 [-100,100]

6 Weierstrass Function 1 10 [-100,100]

7 Modified Schwefel’s Function 1 10 [-100,100]

8 Expanded Schaffer’s F6 Function 1 10 [-100,100]

9 Happy Cat Function 1 10 [-100,100]

10 Ackley’s Function 1 10 [-100,100]

Require: P... the population
Require: NP ... the population size
Ensure: ~xbest ... the best individual in the population
Ensure: f(~xbest) ... the value of the best individual

1: Initialize Fi = 0.5; CRi = 0.9; (i ∈ {1,NP})
2: Initialize population P = (~x1, ~x2, . . . , ~xNP) randomly
3: while stopping criteria is not met do
4: for (i← 0; i < NP; i++) do

. ** jDE mutation **

5: F ←

{
Fl + rand1 ∗ Fu, if rand2 < τ1,

Fi,g, otherwise,

6: Randomly select r1, r2, and r3; . r1 6= r2 6= r3 6= i
7: ~vi,g+1 ← ~xr1 + F (~xr2 − ~xr3) . DE/rand/1/

. ** jDE crossover **

8: CR←

{
rand3, if rand4 < τ2,

CRi,g, otherwise,

9: jrand ← rand{1, D}
10: for (j ← 0; j < D; j++) do
11: if (rand(0, 1) ≤ CR or j = jrand) then
12: ui,j,g+1 ← vi,j,g+1

13: else
14: ui,j,g+1 ← xi,j,g
15: end if
16: end for

. ** selection **
17: if (f(~ui,g+1) ≤ f(~xi,g)) then . minimization
18: ~xi,g+1 ← ~ui,g+1

19: Fi,g+1 ← F
20: CRi,g+1 ← CR
21: else
22: ~xi,g+1 ← ~xi,g
23: Fi,g+1 ← Fi,g

24: CRi,g+1 ← CRi,g

25: end if
26: end for
27: end while

Algorithm 2: jDE.

Each strategy has a different ability to maintain the popula-
tion diversity which might increase/decrease convergence rate
during the evolutionary process.

Crossover: A mutant vector ~vi,g+1 generated by one of
the mutation strategies is used in the next operation, called
crossover. Binomial crossover is widely used in DE. Another
type of crossover is exponential [3], [4]. The former creates a
trial vector ~ui,g+1 as follows:

ui,j,g+1 =

{
vi,j,g+1, if rand(0, 1) ≤ CR or j = jrand,

xi,j,g, otherwise,

for i = 1, 2, ...,NP and j = 1, 2, ..., D. CR ∈ [0, 1] is
crossover parameter and presents the probability of choosing
components for a trial vector from a mutant vector. If a
component was not selected from the mutant vector, then it
is taken from the parent vector ~xi,g . Randomly chosen index
jrand ∈ {1, 2, ...,NP} is responsible for the trial vector to
contain at least one component from the mutant vector.

If some variables from the trial vector are out of bounds,
a repair mechanism is applied. Our algorithm reflects these
variables back into the search space.

Selection: After crossover operation, the trial vector is
evaluated – an objective function f(~ui,g+1) is calculated. Then
selection operation compares two vectors, population vector
~xi,g and its corresponding trial vector ~ui,g+1, according to
their objective function values. The better vector will become
a member of the next generation. The selection operation for
a minimization optimization problem is defined as follows:

~xi,g+1 =

{
~ui,g+1, if f(~ui,g+1) ≤ f(~xi,g),
~xi,g, otherwise.

This selection operation is greedy and it is known for DE,
but rarely applied in other EAs.

B. jDE Algorithm

The jDE algorithm was introduced in 2006 [10]. It uses
self-adapting mechanism of two control parameters, i.e., scale
factor and crossover rate. Each individual has its own control
parameter values Fi and CRi. New control parameters Fi,g+1

Require: Pb ... big population
Require: Ps ... small population
Require: bNP ... size of Pb

Require: sNP ... size of Ps: bNP = m× sNP,m ∈ 1, 2, ...

1: Initialize population Pb = (~x1, . . . , ~xbNP) randomly
2: Initialize population Ps = (~x1, . . . , ~xsNP) randomly
3: Initialize Fi = 0.5; CRi = 0.9; (i ∈ {1, bNP+sNP})
4: while stopping criteria is not met do
5: Check for a reinitialization of Pb

6: Check for a reinitialization of Ps

7: for each i ∈ Pb do
. ** on big population **

8: Perform jDE mutation (Steps 5–7 in Alg. 2)
9: Perform jDE crossover (Steps 8–16 in Alg. 2)

10: Perform jDE selection (Steps 17–25 in Alg. 2)
11: end for
12: if ~xbest ∈ Pb then
13: Copy ~xbest into Ps

14: end if
15: for k ∈ 1, 2, ...,m do . repeat m-times
16: for each i ∈ Ps do

. ** on small population **
17: Perform jDE mutation (Steps 5–7 in Alg. 2)
18: Perform jDE crossover (Steps 8–16 in Alg. 2)
19: Perform jDE selection (Steps 17–25 in Alg. 2)
20: end for
21: end for
22: end while

Ensure: ~xbest . the best individual in the population
Ensure: f(~xbest) . the value of the best individual

Algorithm 3: jDE100.

and CRi,g+1 are calculated before the mutation operation is
performed as follows [10]:

Fi,g+1 =

{
Fl + rand1 ∗ Fu, if rand2 < τ1,

Fi,g, otherwise,

CRi,g+1 =

{
rand3, if rand4 < τ2,

CRi,g, otherwise,

where randj , for j ∈ {1, 2, 3, 4} are random values uniformly
distributed within the range [0, 1]. It can be seen, that τ1 and
τ2 values represent probabilities to adjust control parameters
F and CR, respectively. For the sake of clarity, a pseudo-code
of the jDE algorithm is depicted in Alg. 2.

In [10] and in many of our later works, parameters
τ1, τ2, Fl, Fu are fixed to values 0.1, 0.1, 0.1, 0.9, respectively.
In such a way, the new F takes a value from [0.1, 1.0], and
the new CR from [0, 1].

In [21] lower and upper bounds of F and CR are used
differently compared to the suggestions in [10]. LSGOjDE was
proposed in [21] where three mutation strategies are applied.
The upper limit for F is set to 1 only for jDE/current-to-best/1
strategy, for jDE/rand/1 strategy it is set to 2. Permitting larger
values of F enables the algorithm to make a larger move of
the mutant vector ~vi,g+1 away from ~xr1,g . Parameter F is not

Fig. 1. Evolutionary process in the jDE100 algorithm. Four steps are
repeating: 1© One generation is performed on big population Pb. 2© If
required, ~xbest is copied into small population Ps. 3© More generations
are performed on Ps. 4© The evolutionary process control switches to Pb.

used in the third strategy, i.e., local search, as this strategy is
not subjected to mutation.

Commonly, CR value is set between 0 and 1. Also, in the
case of self-adaptation in jDE, where its value changes over
iterations, it is kept between these two limits. The LSGOjDE
algorithm keeps the same lower limit, but defines a different
upper limit for each strategy:

CRi,g+1 =

 CRl + rand3 · CRu if rand4 < τ2,

CRi,g otherwise.
(1)

The lower limit CRl is always set to 0. The value of the upper
limit depends on the strategy. In the LSGOjDE, the upper limit
is set to 0.25, 1.2, and 1.2, respectively.

In [22], a narrower interval is used for self-adapting values
of the F control parameter: [0.01, 0.1].

Note that Fi,g+1 and CRi,g+1 are obtained before the mu-
tation is performed. So they influence the mutation, crossover,
and selection operations of the new vector ~xi,g+1.

III. ALGORITHM JDE100
In this section, a new algorithm (jDE100) for solving

single-objective real parameter optimization is presented and
its pseudo-code is given in Algorithm 3. It is an extended
version of the jDE [10] algorithm. The new algorithm uses
two populations: a big population Pb, and a small population
Ps. Figure 1 depicts the evolutionary process over these
two populations. The sizes of the populations are bNP and
sNP , respectively. Before the evolutionary process starts, the
populations are initialized (Steps 1 and 2 in Alg. 3), and also
the control parameters Fi and CRi for both populations are
initialized. The main loop represents the evolutionary process,
which is iterated until stopping criteria is met. The stopping
criteria is a combination of two conditions:

• a run is terminated when a 10-digit level of accuracy is
reached, or

TABLE II
PARAMETERS IN THE JDE100 ALGORITHM. Fl AND CRl ARE TWO TUNABLE PARAMETERS.

Parameter Value Description

Fl
5.0√
bNP

for F1–F8, F10, big pop. lower limit of scale factor for the big population

Fl
0.01√
bNP

for F9, big pop. lower limit of scale factor for the big population

Fl
1.0√
sNP

for F1–F8, F10, small pop. lower limit of scale factor for the small population

Fl
0.01√
sNP

for F9, small pop. lower limit of scale factor for the small population

Fu 1.1 upper limit of scale factor

CRl 0.0 for F1–F8, F10 lower limit of crossover parameter

CRl 1.0 for F9 lower limit of crossover parameter

CRu 1.1 upper limit of crossover parameter

Finit 0.5 initial value of scale factor

CRinit 0.5 initial value of crossover parameter

τ1 0.1 probability to self-adapt scale factor

τ2 0.1 probability to self-adapt crossover parameter

bNP 1000 size of Pb

sNP 25 size of Ps

ageLmt 1e9 number of FEs when population restart needs to occurs

eps 1e− 16 small value used to check if two value are similar

maxFEs 1e12 one of stopping condition (max. number of function evaluations). (Actually not used.)

myEqs 25 reinitialization if myEqs% of individuals in the corresponding population have the similar
function values

• a run is terminated after maxFEs = 1e12.

From the obtained results which are presented in the next
section, the latter condition of stopping criteria has never
occurred during experiments by the jDE100 algorithm.

Next two steps are responsible for checking if any of
two populations needs to be reinitialized. Population Pb is
reinitialized if myEqs percent of the best individuals in Pb

have a similar function value (a difference is less than a small
value eps = 1e−16). The reinitialization is also applied if the
best individual in Pb is not improved for ageLmt evaluations.
During the reinitialization process of the big population Pb

all individuals of Pb are randomly reinitialized, i.e., each in-
dividual gets randomly generated uniformly distributed values
between lower and upper bound for all its components.

Reinitialization in Ps has occurred if myEqs% of sNP
individuals have a similar function value (a difference is less
than a small value eps = 1e−16) as the best individual in Ps.
It reinitializes all individuals in Ps except the ~xbest vector in
Ps, which remains unchanged.

One generation is performed on the big population Pb

(Lines 7–11 in Alg. 3). Mutant vector ~vi is generated with the

jDE/rand/1 strategy. Note, r1 is the index of individual from
Pb, while r2 and r3 are indexes of individuals from Pb ∪~xs,
where ~xs is one individual from the small population Ps. The
motivation of using the proposed ranges for the indexes r2 and
r3 is to have a small influence of Ps on Pb. It is expected
that Ps may have a faster convergence speed (it also may get
trapped into a local minimum) since sNP is smaller than bNP .
Then the crossover and selection operations follow, which are
identical as in jDE.

When one generation in Pb has finished the algorithm
checks if ~xbest was found in Pb. If yes, then it is copied into
the small population Ps. In this way, a bigger influence of
Pb on Ps is applied, and we want that the smaller population
continues the evolutionary process also with one fresh (i.e. the
best) individual.

The mutation, crossover and selection operations on Ps are
similar to those on Pb. They are repeated m-times, which
ensures that both populations have an equal amount of function
evaluations. Here, we assumed that bNP = m × sNP,m ∈
1, 2, Note, in the mutation, the r1, r2, and r3 are indexes
of individuals from Ps.

TABLE III
FIFTY RUNS FOR EACH FUNCTION SORTED BY THE NUMBER OF CORRECT DIGITS.

Function
Number of correct digits

Score
0 1 2 3 4 5 6 7 8 9 10

F1 0 0 0 0 0 0 0 0 0 0 50 10

F2 0 0 0 0 0 0 0 0 0 0 50 10

F3 0 0 0 0 0 0 0 0 0 0 50 10

F4 0 0 0 0 0 0 0 0 0 0 50 10

F5 0 0 0 0 0 0 0 0 0 0 50 10

F6 0 0 0 0 0 0 0 0 0 0 50 10

F7 0 0 0 0 0 0 0 0 0 0 50 10

F8 0 0 0 0 0 0 0 0 0 0 50 10

F9 0 0 0 0 0 0 0 0 0 0 50 10

F10 0 0 0 0 0 0 0 0 0 0 50 10

Total: 100

TABLE IV
BEST, WORST, MEDIAN, MEAN AND STANDARD DEVIATION VALUES OF

THE NUMBER OF FUNCTION EVALUATION (FES) AFTER 10-DIGITS
ACCURACY FOR BEST 25 RUNS OUT OF ALL 50 RUNS, AS IT IS REQUIRED

BY THE ORGANIZER OF THIS COMPETITION.

No. best worst median avg stdDev

1 3.378e+04 6.237e+05 9.53e+04 1.59e+05 1.597e+05

2 2.331e+06 2.431e+06 2.388e+06 2.385e+06 2.719e+04

3 1.377e+05 2.814e+06 1.129e+06 1.31e+06 8.519e+05

4 1.25e+05 5.099e+05 3.718e+05 3.475e+05 1.149e+05

5 5.52e+04 3.771e+05 1.473e+05 1.673e+05 8.426e+04

6 3.501e+04 4.155e+04 3.789e+04 3.841e+04 2.063e+03

7 2.482e+06 1.589e+07 9.185e+06 9.105e+06 4.528e+06

8 1.591e+08 1.779e+09 1.372e+09 1.219e+09 4.388e+08

9 6.086e+08 1.056e+09 9.494e+08 9.207e+08 1.131e+08

10 1.796e+05 2.533e+06 1.761e+06 1.541e+06 7.46e+05

The parameters of our jDE100 algorithm are presented in
Table II.

IV. EXPERIMENTS

The jDE100 algorithm was tested on ten CEC 2019 special
session benchmark functions of the 100-Digit Challenge [1]
and the functions are collected and presented in Table I. The
functions have dimensions from 9 to 18, but most of them have
D = 10. In the last column of Table I, the upper and lower
bounds of a search space are shown. The optimal solution
values are known for all benchmark functions in this challenge.
The minimum for all functions to ten digits of accuracy is
1.000000000. The goal is to compute each function’s mini-
mum value to 10 digits of accuracy. The maximum number
of objective function evaluations has been limited in previous
competitions, but this challenge has no limit on either time or
the maximum number of function evaluations.

A. Evaluation Method

In the 100-Digit Challenge [1] there are 10 problems, which
in our case are 10 functions, and the goal is to compute each
function’s minimum value to 10 digits of accuracy without
being limited by time. The challenge asks contestants to solve
all ten problems with one algorithm, although limited control
parameter tuning for each function is permitted to restore some
of the original contests flexibility.

For each function, 50 consecutive runs of an algorithm are
required, each with a different initial population. The total
number of correct digits in the 25 runs that have the lowest
function values are collected. The score for that function is
the average number of correct digits in the best 25 trials, i.e.
if 50% or more of the trials find all 10 digits, then the score
for that function is a perfect 10. The maximum score for the
ten function total is 100, i.e. when the best 25 out of 50 trials
for all 10 functions give the minimum to 10-digit accuracy.

The organizers of the challenge ask contestants to record
the number of function evaluations (FEs) after (1, 2, 3, 4, 5,
6, 7, 8, 9, 10) digit(s) of accuracy for each of the best 25 runs.
The participants are required to send the final results as by the
specified format to the organizers who will present an overall
analysis and comparison based on these results.

B. Experimental Results

The obtained score results of the proposed algorithm, named
jDE100, are presented in Table III. This table lists the number
of trials for each function in a run of 50 that found n correct
digits, where n = 1, 2, ..., 10. In the final column, the average
number of correct digits in the best 25 runs is shown, i.e., the
score for that function. The total score is calculated as the sum
of the scores for all 10 functions, and it is presented in the
last column. Our algorithm has obtained a perfect score for
all functions in the challenge (F1–F10), and the total score is
100.

The competition rules regarding parameters and operators
are as follow. One may tune up to 2 parameter(s) and/or

●

●

●

●

●

●

●

●

●

●

1200000 1400000 1600000 1800000 2000000 2200000

FEs

D
ig

it
s

1
2

3
4

5
6

7
8

9
1
0

Fig. 2. Convergence graph for function F2.

●

●

●

●

●

●

●

●

●

●

2e+05 4e+05 6e+05 8e+05 1e+06

FEs

D
ig

it
s

1
2

3
4

5
6

7
8

9
1
0

Fig. 3. Convergence graph for function F3.

operator(s) independently for each problem. There is no limit
to the number of parameters and operators that are fixed or
adjusted in the identical manner for all 10 problems, but the
two tunable parameter(s) and/or operator(s) must be the same
for all 10 problems. Adaptive parameters do not count as tuned
parameters provided that they are both initialized and adapted
in the identical manner for all 10 problems. Table II shows
the values of parameters in our algorithm.

Table IV presents best, worst, median, mean and standard
deviation values of the number of function evaluation (FEs)
after 10-digits accuracy for each function of the best 25 runs.
Since mean (avg) values are similar to standard deviation
values we can assume that the distribution of the FEs is near-
exponential or near-geometric.

Convergence graphs – the number of function evaluations
required to get digits accuracy – for functions F2, F3, and F8
are presented on Figures 2, 3, and 4, respectively. One can see
a linear dependency of digits accuracy and number of function
evaluations on function F2. The algorithm required the biggest
amount of FEs to get 6 digit accuracy on function F3, while
on function F8 the biggest amount of FEs were needed from
2 digits to get to 3 digits accuracy.

●

●

●

●

●

●

●

●

●

●

0.0e+00 2.0e+08 4.0e+08 6.0e+08 8.0e+08 1.0e+09 1.2e+09 1.4e+09

FEs

D
ig

it
s

1
2

3
4

5
6

7
8

9
1
0

Fig. 4. Convergence graph for function F8.

PC configuration:
System: GNU Linux, CPU: Intel(R) Core(TM) i7-4770 CPU
3.4 GHz, Main memory: 16 GB, Programming language: C++,
Algorithm: jDE100, Compiler: g++ (GNU Compiler).

V. CONCLUSIONS

In this paper, we proposed a new algorithm for solving the
problems of The 100-Digit Challenge. Our algorithm uses self-
adaptive control parameters F and CR, two populations, mi-
gration of the best individual from the bigger population into
the smaller population, restart mechanism in both populations.

The proposed algorithm obtained the scores 10 (the perfect)
for functions F1–F10, i.e. for all functions in this challenge.
The total score is 100, which is the highest possible score
value.

ACKNOWLEDGMENT

The authors would also like to acknowledge the efforts of
the organizers of this session and availability of the benchmark
functions source code.

REFERENCES

[1] K. V. Price, N. H. Awad, M. Z. Ali, and P. N. Suganthan, “Problem
Definitions and Evaluation Criteria for the 100-Digit Challenge Special
Session and Competition on Single Objective Numerical Optimization,”
Nanyang Technological University, Singapore, Tech. Rep., November
2018. [Online]. Available: http://www.ntu.edu.sg/home/epnsugan/

[2] J. Brest, M. S. Maučec, and B. Bošković, “Single objective real-
parameter optimization: Algorithm jSO,” in IEEE Congress on Evo-
lutionary Computation (CEC) 2017. IEEE, 2017, pp. 1311–1318.

[3] R. Storn and K. Price, “Differential Evolution – A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces,” Journal of
Global Optimization, vol. 11, pp. 341–359, 1997.

[4] S. Das and P. Suganthan, “Differential evolution: A survey of the state-
of-the-art,” IEEE Transactions on Evolutionary Computation, vol. 15,
no. 1, pp. 27–54, 2011.

[5] F. Neri and V. Tirronen, “Recent advances in differential evolution: a
survey and experimental analysis,” Artificial Intelligence Review, vol. 33,
no. 1–2, pp. 61–106, 2010.

[6] S. Das, S. S. Mullick, and P. N. Suganthan, “Recent advances in
differential evolution–an updated survey,” Swarm and Evolutionary
Computation, vol. 27, pp. 1–30, 2016.

[7] T. Eltaeib and A. Mahmood, “Differential Evolution: A Survey and
Analysis,” Applied Sciences, vol. 8, no. 10, p. 1945, 2018.

[8] P. Sharma, H. Sharma, S. Kumar, and J. C. Bansal, “A Review on
Scale Factor Strategies in Differential Evolution Algorithm,” in Soft
Computing for Problem Solving. Springer, 2019, pp. 925–943.

[9] M. S. Maučec and J. Brest, “A review of the recent use of Differential
Evolution for Large-Scale Global Optimization: An analysis of selected
algorithms on the CEC 2013 LSGO benchmark suite,” Swarm and
Evolutionary Computation, 2018.

[10] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Žumer, “Self-
Adapting Control Parameters in Differential Evolution: A Comparative
Study on Numerical Benchmark Problems,” IEEE Transactions on
Evolutionary Computation, vol. 10, no. 6, pp. 646–657, 2006.

[11] U. Mlakar, B. Potočnik, and J. Brest, “A hybrid differential evolution
for optimal multilevel image thresholding,” Expert Systems with Appli-
cations, vol. 65, pp. 221–232, 2016.

[12] B. Bošković and J. Brest, “Protein folding optimization using differential
evolution extended with local search and component reinitialization,”
Information Sciences, vol. 454, pp. 178–199, 2018.

[13] A. Zamuda and J. Brest, “Self-adaptive control parameters randomiza-
tion frequency and propagations in differential evolution,” Swarm and
Evolutionary Computation, vol. 25, pp. 72–99, 2015.

[14] R. P. Parouha and K. N. Das, “A memory based differential evolution
algorithm for unconstrained optimization,” Applied Soft Computing,
vol. 38, pp. 501–517, 2016.

[15] I. Poikolainen, F. Neri, and F. Caraffini, “Cluster-based population ini-
tialization for differential evolution frameworks,” Information Sciences,
vol. 297, pp. 216–235, 2015.

[16] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution
algorithm with strategy adaptation for global numerical optimization,”
IEEE Transactions on Evolutionary Computation, vol. 13, no. 2, pp.
398–417, 2009.

[17] J. Zhang and A. Sanderson, “JADE: Adaptive Differential Evolution
with Optional External Archive,” IEEE Transactions on Evolutionary
Computation, vol. 13, no. 5, pp. 945–958, 2009.

[18] R. Tanabe and A. Fukunaga, “Improving the search performance of
SHADE using linear population size reduction,” in 2014 IEEE Congress
on Evolutionary Computation (CEC2014). IEEE, 2014, pp. 1658–1665.

[19] J. Brest and M. S. Maučec, “Population Size Reduction for the Dif-
ferential Evolution Algorithm,” Applied Intelligence, vol. 29, no. 3, pp.
228–247, 2008.

[20] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution, A
Practical Approach to Global Optimization. Springer, 2005.

[21] M. S. Maučec, J. Brest, B. Bošković, and Z. Kačič, “Improved Differen-
tial Evolution for Large-Scale Black-Box Optimization,” IEEE Access,
2018.

[22] J. Brest, A. Zamuda, I. Fister, and M. S. Maučec, “Large scale global
optimization using self-adaptive differential evolution algorithm,” in
2010 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2010,
pp. 1–8.

