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University of Maribor, FEECS

Maribor, Slovenia
Email: mirjam.sepesy@um.si

Borko Bošković
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Abstract—In this paper, we propose a new algorithm for solv-
ing real parameter single-objective optimization problems that
were prepared for the CEC 2021 Special Session and Competition
on Single Objective Bound Constrained Numerical Optimization.
Single-objective optimization problems are often very complex
and computationally expensive. The presented algorithm, called
j21, uses several mechanisms: two populations, vectors are
chosen from both sub-populations in the mutation operation,
crowding in the big population, population size reduction, etc.
We show the experimental results for each benchmark function
for two scenarios of different dimensions and eight configuration
scenarios as required by the organizers of the CEC 2021 Special
Session. We also compare the obtained results of j21 in a scenario
with larger dimension and on one selected configuration with the
original DE and j2020 algorithms.

I. INTRODUCTION

Single-objective real parameter optimization can be found
in many practical problems in different research domains.
We are interested in optimizing one objective only, but this
optimization can be a very challenging task since the search
space is huge even for a small number of parameters, and
it grows tremendously when the number of parameters is
increasing [1].

Also, at CEC, the competition and/or special session on
the Single-objective real parameter optimization has been
organized in 2005 and in each year after 2013, and recently the
competition has been extended also to the GECCO conference.

In this paper, we will tackle the optimization problems that
are required to be minimized. A global optimization problem
can be described as an objective function f(~x), where a vector
~x = {x1, x2, ..., xD} consists of D variables or parameters.
A goal in global optimization is to find a vector ~x, called a
solution, which minimizes the objective function f(~x). Each
solution’s variable xj , j = 1, 2, ..., D is defined by its lower
xj,low and upper xj,upp bound. D denotes a dimension of the
optimization problem.

An objective function might have many optima, and we
are the most interested in cases where the algorithm finds the
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global one. If an algorithm traps itself into a local optimum,
the obtained result of optimization may be poor [1].

Population-based algorithms, like evolutionary algorithms,
swarm-based algorithms, etc., are suitable for solving real
parameter optimization problems since they do not need
any gradient calculation and have a good convergence speed
toward a global optimum.

The Differential Evolution (DE) [2] algorithm was proposed
by R. Storn and K. Price in 1995 as a technical report and in
1997 as a journal paper. We can put it in the group of evolu-
tionary algorithms, and it has shown competitive performances
when solving real-world optimization problems [3], [4], [5] in
various domains. In recent years, a lot of improvements on DE
were proposed, and they have been used in many practical
works. We refer the interested readers to recently published
reviews and surveys [6], [7], [8], [9], [10].

At the CEC 2019 competition on the 100-Digit Chal-
lenge [11], and the CEC 2020 competition on single-objective
real parameter optimization some DE versions, more precisely
DE version based on jDE [12], [13], were among the top
algorithms [14], [15].

The presented algorithm, called j21, is based on the self-
adaptive jDE100 [12] and j2020 [13] algorithms. It uses two
populations, a restart mechanism that is applied in both pop-
ulations to have a sufficient population diversity, a crowding
mechanism, and a mechanism to choose vectors in the muta-
tion operation from both sub-populations. These mechanisms
are similar to mechanisms in the jDE100 and j2020 algorithms.
The proposed algorithm j21 applies a population size reduction
during the evolutionary process, which was not used in the two
previous algorithms. It also uses an extended range of values
for the self-adaptive control parameter CR.

The main contributions of this paper are: New algorithm
(called j21) is proposed, computer experiments for CEC 2021
competition on the single objective real parameter optimization
problems are conducted, the obtained results are collected
and shown in a form required by the competition organizers,
and we compare the obtained experimental results with some
results of the classic DE algorithm and the j2020 algorithm –
our algorithm from last year competition.

The remainder of the paper is as follows. An overview of978-1-7281-8393-0/21/$31.00 ©2021 European Union



Require: P... the population of NP individuals

1: Initialize population P = (~x1, ~x2, . . . , ~xNP) randomly
2: Initialize Fi = 0.5; CRi = 0.9; (i ∈ {1,NP})
3: while stopping criteria is not met do
4: for (i← 0; i < NP; i++) do

. *** jDE mutation ***

5: Ftmp ←
{
Fl + rand1 ∗ Fu, if rand2 < τ1,

Fi,g , otherwise,
6: Randomly select r1, r2, and r3; . r1 6= r2 6= r3 6= i
7: ~vi,g+1 ← ~xr1 + Ftmp(~xr2 − ~xr3 ) . DE/rand/1/

. *** jDE crossover ***

8: CRtmp ←
{
rand3, if rand4 < τ2,

CRi,g , otherwise,

9: jrand ← rand{1, D}
10: for (j ← 0; j < D; j++) do
11: if (rand(0, 1) ≤ CRtmp or j = jrand) then
12: ui,j,g+1 ← vi,j,g+1

13: else
14: ui,j,g+1 ← xi,j,g
15: end if
16: end for

. *** selection ***
17: if (f(~ui,g+1) ≤ f(~xi,g)) then . minimization scenario
18: ~xi,g+1 ← ~ui,g+1

19: Fi,g+1 ← Ftmp

20: CRi,g+1 ← CRtmp

21: else
22: ~xi,g+1 ← ~xi,g
23: Fi,g+1 ← Fi,g

24: CRi,g+1 ← CRi,g

25: end if
26: end for
27: end while

Ensure: ~xbest ... the best individual/vector
Ensure: f(~xbest) ... the function value of the best vector

Algorithm 1: jDE [16].

related work is presented in Section II. Section III describes
our new algorithm, called j21. Experimental results of the
j21 algorithm on the CEC 2021 benchmark function suite are
presented in Section IV. The conclusion is given in Section V.

II. BACKGROUND

In this section, we give a short background on DE and its
two variants jDE and j2020, whose mechanisms are incorpo-
rated in our new algorithm.

A. Differential Evolution

Differential evolution (DE) [2] is a population-based evo-
lutionary algorithm that achieves highly competitive perfor-
mances in many real-world applications dealing with optimiza-
tion [17], [18], [19], [20].

In the classic DE algorithm, a population P has NP vectors
(individuals):

Pg = (~x1,g, . . . , ~xi,g, . . . , ~xNP,g), i = 1, 2, . . . ,NP .

g is employed as a generation index. Each individual:

~xi,g = {xi,1,g, xi,2,g, . . . , xi,D,g}

is represented with D variables.

DE initializes population P and then evolves it throughout
generations guiding the individuals in the searching process
towards a global optimum. At the end of the optimization
process, DE returns the best-found individual and its objective
value.

Initialization: In this step, population P is generated in a
way that each individual is initialized with randomly uniformly
distributed values between lower and upper bound for all its
variables:

xi,j,0 = xj,low + randi,j · (xj,upp − xj,low).

DE evolves the population and during each generation, DE
employs the mutation, crossover, and selection operations for
each individual. These operations are briefly described in the
next subsections.

Mutation: A mutation is the first operation that is employed
by DE. During the mutation operation, DE creates a mutant
vector ~vi,g+1. Nowadays, many strategies exist how to create
a mutant vector. Very often used in practice is the ’DE/rand/1’
mutation strategy that has been introduced in the original DE
algorithm [2]. This strategy randomly selects two vectors in
a population and calculates their difference, then multiplies it
by a scale factor F and adds to the third randomly selected
vector. This mutation strategy can be written as follows [2]:

~vi,g+1 = ~xr1,g + F · (~xr2,g − ~xr3,g).

where r1, r2, and r3 are indices within a set of {1, ...,NP}
and they are randomly chosen in such a way that they are
different from index i and pairwise different of each other:

r1 6= r2 6= r3 6= i.

There exist many other DE mutation strategies [3], [21], [22]
and they have a different influence on a convergence speed on
the one hand, and a different ability not being trapped in local
optima during the evolutionary process on the other hand.

Crossover: The binomial crossover creates a trial vector
~ui,g+1 as follows:

ui,j,g+1 =

{
vi,j,g+1, if randi,j ≤ CR or j = jrand,

xi,j,g, otherwise,

for i = 1, 2, ...,NP and j = 1, 2, ..., D. CR denotes a
crossover parameter, which is within the interval (0, 1]. It
gives the probability of creating trial vector components from
a mutant vector. In case that the component is not selected
from the mutant vector, it is captured from the parent vector
~xi,g . The trial vector contains at least one component from the
mutant vector. Randomly chosen index jrand ∈ {1, 2, ...,NP}
takes care of that.

After crossover, if some trial vector’s variables jump out of
bounds of a search space, a restart or a repair mechanism is
applied.

Besides the binomial crossover, another type of crossover
used in DE is exponential crossover [3], [2].



Require: Pb ... large population
Require: Ps ... small population
Require: bNP ... size of Pb

Require: sNP ... size of Ps

Require: bNP ≥ sNP and bNP = m× sNP,m ∈ 1, 2, ...

1: Initialize population Pb = (~x1, . . . , ~xbNP) randomly
2: Initialize population Ps = (~x1, . . . , ~xsNP) randomly
3: Initialize Fi = 0.5; CRi = 0.9; (i ∈ {1, bNP+sNP})
4: while stopping criteria is not met do
5: Check for a reinitialization of Pb

6: Check for a reinitialization of Ps

7: for each i ∈ Pb do
. *** on the large population ***

8: perform jDE mutation (Steps 5–7 in Alg. 1) using
9: ~xr1 ∈ Pb

10: ~xr2 , ~xr3 ∈ Pb
⋃

Ms,Ms ⊂ Ps

11: end perform
12: Perform jDE crossover (Steps 8–16 in Alg. 1)
13: Perform crowding in Pb

14: Perform jDE selection (Steps 17–25 in Alg. 1)
15: end for
16: if ~xbest ∈ Pb then
17: Copy ~xbest into Ps

18: end if
19: for k ∈ 1, 2, ...,m do . repeat m-times
20: for each i ∈ Ps do

. *** on the small population ***
21: Perform jDE mutation (Steps 5–7 in Alg. 1)
22: Perform jDE crossover (Steps 8–16 in Alg. 1)
23: Perform jDE selection (Steps 17–25 in Alg. 1)
24: end for
25: end for
26: Check for a population size reduction of Pb

27: end while

Ensure: ~xbest . the best individual/vector
Ensure: f(~xbest) . the value of the best vector

Algorithm 2: The proposed j21 algorithm. It is based on the
self-adaptive differential evolution jDE100 [12] and j2020 [13]
algorithms.

Selection: The selection operation compares the objective
function values of two vectors, the population vector ~xi,g
and its corresponding trial vector ~ui,g+1. The better one will
survive as a member of the next generation. Mathematically,
this operation is in a case of minimization defined as follows:

~xi,g+1 =

{
~ui,g+1, if f(~ui,g+1) ≤ f(~xi,g),
~xi,g, otherwise.

Stopping condition: The stopping criteria in DE can be
defined as the maximum number of function evaluations
(MaxFEs), the maximum number of generations (GMAX ),
available execution time budget, etc.

B. jDE Algorithm

The jDE [16] algorithm applies the self-adapting mechanism
of two control parameters (scale factor F and crossover rate
CR) at the individual level. Before the mutation operation
starts, new Fi,g+1 and CRi,g+1 are generated as follows [16]:

Fi,g+1 =

{
Fl + rand1 ∗ Fu, if rand2 < τ1,

Fi,g, otherwise,

Fig. 1. Illustration of the evolutionary process in the jDE100 [12] and
j2020 [13] algorithms. The algorithm repeats four steps: (1) Performs one
generation on the larger population Pb. (2) Copies the best individual (~xbest)
into the smaller population Ps. (3) Executes more generations on Ps. (4)
Switches the evolutionary process control back to Pb.

TABLE I
SUMMARY OF THE CEC 2021 BOUND-CONSTRAINED REAL PARAMETER

BENCHMARK FUNCTIONS [23].

No. Functions

Unimodal
Functions

F1 Shifted and Rotated Bent Cigar Function (CEC 2017
F1)

Basic
Functions

F2 Shifted and Rotated Schwefel’s Function (CEC 2014
F11)

F3 Shifted and Rotated Lunacek bi-Rastrigin Function
(CEC 2017 F7)

F4 Expanded Rosenbrock’s plus Griewangk’s Function
(CEC2017 f19)

Hybrid
Functions

F5 Hybrid Function 1 (N = 3) (CEC 2014 F17)
F6 Hybrid Function 2 (N = 4) (CEC 2017 F16)
F7 Hybrid Function 3 (N = 5) (CEC 2014 F21)

Composition
Functions

F8 Composition Function 1 (N = 3) (CEC 2017 F22)
F9 Composition Function 2 (N = 4) (CEC 2017 F24)
F10 Composition Function 3 (N = 5) (CEC 2017 F25)

Search range: [-100,100]D , D = 10, and D = 20

CRi,g+1 =

{
rand3, if rand4 < τ2,

CRi,g, otherwise.

Here, randj , (j ∈ {1, 2, 3, 4}) are random values that are
uniformly distributed within the range [0, 1]. Values τ1 and
τ2 are responsible to adjust control parameters F and CR,
respectively. A pseudo-code of the jDE algorithm is shown in
Alg. 1.

C. Algorithms jDE100 and j2020

In this section, we give an overview of two algorithms
jDE100 [12] and j2020 [13]. The second one was presented
in the previous year at the CEC conference, and it ranked
in 3rd place, while the first one was presented at the CEC
conference two years ago and ranked in the first place.
Both algorithms are suitable for solving single-objective real-
parameter optimization problems. They use two not equal-
sized populations, i.e., a big population Pb, and a small popu-
lation Ps. The evolutionary process over these two populations
is shown in Figure 1. The population sizes in jDE100 are
bNP = 1000 and sNP = 25 , respectively, while in j2020 they
are 7D andD.



TABLE II
PARAMETER SETTINGS IN THE PROPOSED J21 ALGORITHM.

Parameter Value Description
bNP 160 size of Pb

sNP 10 size of Ps

Fl,b 0.1 lower limit of scale factor for Pb

Fl,s 0.17 lower limit of scale factor for Ps

Fu 1.1 upper limit of scale factor for Pb and Ps

CRl,b 0.0 lower limit of crossover parameter for Pb

CRl,s 0.1 lower limit of crossover parameter for Ps

CRu,b 1.1 upper limit of crossover parameter for Pb

CRu,s 0.8 upper limit of crossover parameter for Ps

Finit 0.5 initial value of scale factor
CRinit 0.9 initial value of crossover parameter
τ1 0.1 probability to self-adapt scale factor
τ2 0.1 probability to self-adapt crossover parameter

ageLmt maxFEs
10

number of FEs with no improvement of the best
individual then a restart in Pb is required to
occurs

eps 10−12 small value used to check if two function values
are similar

myEqs 25 reinitialization if myEqs% of individuals in
the corresponding population have the similar
function values

TABLE III
RESULTS FOR 10D (BASIC).

Func. Best Worst Median Mean Std
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.0000 10.8737 10.8737 5.6323 5.4338
4 0.0000 0.4673 0.2574 0.2430 0.0997
5 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.0000 0.2328 0.0194 0.0340 0.0662
7 0.0000 0.0377 0.0042 0.0080 0.0092
8 0.0000 0.0000 0.0000 0.0000 0.0000
9 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.0036 47.9958 47.9880 46.3889 8.7608

The source code of both algorithms is available at https:
//github.com/P-N-Suganthan.

III. THE PROPOSED ALGORITHM J21

In this section, we present a new algorithm (called j21)
for solving single-objective bound-constrained optimization
problems. The pseudo-code of the j21 algorithm is given in
Algorithm 2. The algorithm consists of several mechanisms,
which are described in this section.

It uses self-adaptive F and CR control parameters, incorpo-
rated at the individual’s level. This self-adaptation is the same
as in the j2020 [13] algorithm, and it was used for the first time
in the jDE [16] algorithm. If the trial vector has some variables
out of bounds after crossover, then they are reflected into the
search space. This is similar as in our previous algorithms.

The new algorithm applies two populations, which have
different sizes. We denote a big population as Pb and a small
population as Ps. A similar approach of using two populations
has been applied in the jDE100 [12] and j2020 [13] algorithms.
The evolutionary process that is conducted over these two
populations, is shown in Figure 1. The bigger population
has bNP individuals and the smaller population has sNP

TABLE IV
RESULTS FOR 10D (SHIFT OPERATOR).

Func. Best Worst Median Mean Std
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0625 0.0000 0.0021 0.0114
3 0.0000 10.8737 10.8737 10.1488 2.7587
4 0.0319 0.4086 0.2655 0.2541 0.0797
5 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.0000 0.2082 0.0195 0.0254 0.0397
7 0.0000 0.0357 0.0030 0.0056 0.0082
8 0.0000 0.0000 0.0000 0.0000 0.0000
9 0.0000 300.0000 100.0000 109.7698 47.6372
10 100.0117 400.0000 400.0000 363.3358 96.4236

TABLE V
RESULTS FOR 10D (ROTATION).

Func. Best Worst Median Mean Std
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.2498 65.9362 10.3073 16.1707 17.0992
3 1.6251 16.1424 12.3438 11.5948 3.2553
4 0.3632 1.5393 0.7604 0.8443 0.2824
5 0.0000 12.9655 1.2035 4.3465 5.2843
6 0.0769 11.9144 0.5916 1.3233 2.8770
7 0.0061 0.6405 0.3278 0.3525 0.2141
8 0.0000 48.1326 0.0000 15.8585 19.8712
9 0.0000 0.0000 0.0000 0.0000 0.0000
10 51.3506 52.2214 51.5835 51.6056 0.1781

individuals. Algorithm 2 starts with the initialization of both
populations in Steps 1 and 2 and both self-adaptive control
parameters Fi and CRi for both populations. The evolutionary
process is iterated in the main loop until a stopping criterion
is met. The stopping criterion in this special session is set up
with a predefined limit of the number of function evaluations,
maxFEs .

The next two steps check if any population needs to be
reinitialized. These two steps are similar in the j2020 algo-
rithm.

The individuals in the big population Pb are reinitialized
randomly if one of the following conditions is fulfilled: (1)
myEqs percent of the best individuals in Pb has converged (a
difference of their function values is less than a small value
eps = 10−16), and (2) the best individual in the big Pb was
not improved for ageLmt evaluations.

Reinitialization in Ps occurs if myEqs% of sNP best in-
dividuals in Ps have converged (a difference of their function
values is less than eps = 10−16). All individuals in Ps

are reinitialized, except the ~xbest individual in Ps, which
remains unchanged. One can see this mechanism with the best
individual as elitism.

After that, the algorithm performs one generation on the big
population (Lines 7–15 in Alg. 2). The well-known jDE/rand/1
mutation strategy is applied to generate a mutant vector ~vi.
Note, r1 indicates an index of Pb individual, while r2 and
r3 indicate two individuals from Pb ∪Ms. Here, Ms ⊂ Ps

presents a small set of Ps individuals. Here, we want only the
small influence from Ps on Pb. There only indices r2 and
r3 are used during this process but not r1, which would have
a bigger influence. The number of individuals in Ms in our



TABLE VI
RESULTS FOR 10D (TRANSLATION).

Func. Best Worst Median Mean Std
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.0000 10.8737 0.0000 4.7119 5.4804
4 0.0000 0.3614 0.2574 0.2393 0.0928
5 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.0000 0.2507 0.0197 0.0327 0.0550
7 0.0000 0.3239 0.0047 0.0198 0.0584
8 0.0000 0.0000 0.0000 0.0000 0.0000
9 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.0461 48.0572 47.9880 46.3925 8.7534

TABLE VII
RESULTS FOR 10D (SHIFT AND ROTATION).

Func. Best Worst Median Mean Std
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.4372 171.3836 11.8920 21.5458 34.2861
3 5.5558 15.1060 11.7437 11.7348 2.0313
4 0.1187 1.7470 0.7843 0.7956 0.3662
5 0.0000 11.5892 0.6246 1.7284 3.3110
6 0.0318 0.8982 0.5927 0.5166 0.2610
7 0.0000 17.0968 0.3130 1.3650 4.2406
8 0.0000 39.9225 0.0010 9.3124 11.9931
9 0.0000 100.0000 100.0000 90.0000 30.5129

10 100.0221 397.7457 397.7429 318.3631 133.8874

algorithm is not fixed, and it is expressed as follows:

|Ms| =


1, if 1 ≤ it ≤ 1

3MaxFEs,

2, if 1
3MaxFEs < it ≤ 2

3MaxFEs,

3, if 2
3MaxFEs < it ≤ MaxFEs,

where it = 1, 2, · · · ,MaxFEs is the iteration counter. During
the evolutionary process, we increase the number of individu-
als in Ms. It is expected that Ps, which has fewer individuals,
has a faster convergence speed, but it also has a more chance
to get trapped into a local minimum.

Then the crossover, crowding, and selection operations
follow on Pb. Crossover and selection are identical as in
jDE. After a crossover operation, the j21 algorithm applies
a crowding mechanism based on the Euclidean distance. An
individual, which is the closest one to the trial vector, competes
against the trial individual during a selection operation and the
better one survives for the next generation.

When one generation in the big population Pb has finished,
our algorithm checks if the best individual, ~xbest, was found
and then copies it into the small population Ps. In such a way,
the smaller population will have one fresh individual in the
search process. This part is the same as in the j2020 algorithm.

Then the mutation, crossover, and selection operations are
repeated m-times on the smaller population. In such a way,
both populations are equipped with the equal number of
function evaluations. Here, one can assume that bNP =
m× sNP,m ∈ 1, 2, ..., but, in general, this is not required.

The parameters of our j21 algorithm are collected in Ta-
ble II. Parameter settings are similar as in the previous jDE100,
j2020 algorithms. There are only small changes of some lower
and upper limits’ values, which were obtained by hand tuning.

TABLE VIII
RESULTS FOR 10D (SHIFT AND TRANSLATION).

Func. Best Worst Median Mean Std
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0625 0.0000 0.0021 0.0114
3 0.0000 10.8737 10.8737 9.8537 2.9363
4 0.0319 0.4086 0.2566 0.2492 0.0762
5 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.0000 0.2160 0.0197 0.0338 0.0531
7 0.0000 0.0499 0.0026 0.0077 0.0120
8 0.0000 0.0000 0.0000 0.0000 0.0000
9 0.0000 300.0000 100.0000 103.7816 48.0884
10 100.0134 400.0000 400.0000 388.9938 54.8571

TABLE IX
RESULTS FOR 10D (ROTATION AND TRANSLATION).

Func. Best Worst Median Mean Std
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.2498 65.9362 10.3073 16.1707 17.0992
3 0.0000 16.1424 12.0922 11.2593 3.9858
4 0.3632 1.5393 0.7604 0.8391 0.2844
5 0.0000 12.2366 1.2031 4.3366 5.2309
6 0.0769 11.9144 0.5916 1.3303 2.8787
7 0.0009 0.6395 0.3278 0.3411 0.2360
8 0.0000 53.3877 0.0000 12.3731 18.2466
9 0.0000 0.0000 0.0000 0.0000 0.0000
10 51.3020 52.2214 51.5897 51.6150 0.2383

Recently, a population size reduction mechanism is often
applied in evolutionary algorithms. The linear decreasing
population size reduction is used in the L-SHADE [24] algo-
rithm and its derivations, like [25], iL-SHADE [26], jSO [1],
LSHADE-EpSin [27], etc. Another type of population size
reduction was used in works [28], [29], where a population
is divided into two equal parts and an individual from the
first part is competing with an individual from the second part
and the better one is placed into a new population. The size
of the new population is half of the population size before
the reduction mechanism. Such a reduction mechanism can
be applied several times during an evolutionary process and
every time the population size is set to half.

In this paper, we used the population size reduction on
the bigger population. The reduction mechanism is applied
three times during the evolutionary process when the iteration
counter it reaches:

• 1
4MaxFEs ,

• 2
4MaxFEs ,

• 3
4MaxFEs .

In this case, the bigger population has four different sizes
during the evolutionary process. For example, suppose that
population size is 400 at the beginning of the evolutionary
process, then within three population size reductions, the
population size is reduced to 200, 100, and 50.

An evolutionary algorithm needs to apply a population
diversity at a sufficiently high level in the early stages of the
evolutionary process, while in the later stages the algorithm
needs to reduce the population diversity to increase the conver-
gence speed [30]. The population size reduction mechanism



TABLE X
RESULTS FOR 10D (SHIFT, ROTATION AND TRANSLATION).

Func. Best Worst Median Mean Std
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.4372 171.3836 11.8920 21.5458 34.2861
3 0.9950 14.8264 11.9393 11.4914 2.5345
4 0.1187 1.7470 0.7843 0.7951 0.3668
5 0.0000 11.5892 0.6246 1.7036 3.3167
6 0.0318 0.8982 0.5927 0.5166 0.2610
7 0.0000 17.0968 0.3130 1.9143 5.1150
8 0.0000 34.9887 11.5631 11.4069 10.4676
9 0.0000 100.0000 100.0000 90.0000 30.5129

10 100.0127 397.7457 397.7429 338.2016 121.1185

TABLE XI
RESULTS FOR 20D (BASIC).

Func. Best Worst Median Mean Std
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.0000 20.1617 20.1617 12.7691 9.8819
4 0.0000 0.5511 0.3752 0.3380 0.1369
5 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.0073 0.2430 0.0707 0.0896 0.0621
7 0.0025 0.1826 0.0211 0.0353 0.0495
8 0.0000 0.0000 0.0000 0.0000 0.0000
9 0.0000 0.0000 0.0000 0.0000 0.0000
10 48.7532 48.7533 48.7532 48.7532 0.0000

is a step toward providing a proper population diversity level
during the evolutionary process.

The last mechanism used in our j21 algorithm is an extended
range of values for the self-adaptive control parameter CR,
which was introduced for solving large-scale global optimiza-
tion problems in algorithm LSGOjDE [22]. It is controlled
by the CRu,b parameter and is applied only in the bigger
population in the j21 algorithm. A value of the crossover
parameter CR is usually less or equal to 1 but in our algorithm,
we proposed a value that is greater than 1. Consequently,
when crossover parameter CR > 1, the rotational invariant
strategy takes place. This strategy applies only mutation but
no crossover operation.

Notice, the population update of jDE (and its variants,
including j21) differs from the normal DE population update
(asynchronous vs synchronous update) wherein every newly
generated individual is added to the population and can take
part in the mutation of later individuals. This somehow helps
jDE to maintain the selection pressure instead of using a
variant of the DE/rand/1 update.

IV. EXPERIMENTS

A. Benchmark Functions

The benchmark functions for the CEC 2021 single objective
bound-constrained optimization are presented [23]. In this
competition, the benchmark functions are parameterized by
the operators such as bias, rotation, and shift. The main
motive behind the parameterization is to test the effect of all
combinations of the operator on all benchmark functions.

Table I shows the CEC 2021 benchmark functions suite.
It contains one unimodal benchmark function, three basic

TABLE XII
RESULTS FOR 20D (SHIFT OPERATOR).

Func. Best Worst Median Mean Std
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.0000 20.1617 20.1617 19.4897 3.6810
4 0.0000 0.4921 0.3315 0.3135 0.1267
5 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.0055 0.4113 0.0626 0.0948 0.0983
7 0.0030 0.1890 0.0265 0.0324 0.0333
8 0.0000 100.0000 100.0000 90.0000 30.5129
9 100.0000 300.0000 300.0000 246.6667 89.9553
10 400.0000 400.0000 400.0000 400.0000 0.0000

TABLE XIII
RESULTS FOR 20D (ROTATION).

Func. Best Worst Median Mean Std
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0937 5.4656 0.2186 0.8036 1.1450
3 0.0000 21.1844 20.3872 13.0716 9.9780
4 0.6518 1.1877 0.9031 0.9065 0.1339
5 1.3706 136.6971 15.3632 28.4332 35.9765
6 0.1681 3.5406 0.6243 0.7701 0.6186
7 0.1522 63.0947 9.0615 14.9399 16.3903
8 0.0000 126.1177 96.7846 92.6132 25.2404
9 0.0000 0.0000 0.0000 0.0000 0.0000

10 62.5164 63.1648 62.8854 62.8672 0.1711

functions, three hybrid functions, and three composition func-
tions. A search space is determined by the upper and lower
bounds and they are defined as [−100, 100]D. The benchmark
functions have dimensions D = 10 and 20, and all functions
are scalable. The goal is to perform a minimization for
each benchmark function. This special session competition,
as several previous competitions, except CEC 2019, had preset
the limitation of the maximum number of function evaluations
maxFEs . An algorithm’s run needs to terminate after maxFEs
function evaluations. For all benchmark functions, maxFEs is
defined as follows:

• maxFEs =200,000 for D = 10,
• maxFEs =1,000,000 for D = 20.

The both values of the maximum number of function evalu-
ations for this year are set lower than those at the CEC 2020
competition, where maxFEs =1,000,000 for D = 10, and
maxFEs =10,000,000 for D = 20.

There are eight different transformations for each function.
The optimal solution values are known for all benchmark
functions for each transformation (see Table 3 in [23]).

Next, it is required to record the function value (F ∗
i =

Fi(~x
∗)) after

⌊
D

k
5−3maxFEs

⌋
(k = 0, 1, 2, 3, ..., 15) for

each configuration for each run. Therefore, 16 error values
are recorded for each benchmark function for each run and
repeated for each configuration. The obtained final results in
the specified format are asked by the organizers who will
prepare an overall analysis and comparison based on these
results of all contestants. Note, error values that are smaller
than 10−8 are considered as zero.

In this competition, 30 consecutive runs of an algorithm
are needed for each function for each of the 8 configurations,



TABLE XIV
RESULTS FOR 20D (TRANSLATION).

Func. Best Worst Median Mean Std
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.0000 20.1617 20.1617 10.0809 10.2532
4 0.0198 0.5511 0.3646 0.3337 0.1318
5 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.0042 0.2276 0.0659 0.0832 0.0650
7 0.0017 0.1821 0.0238 0.0359 0.0500
8 0.0000 0.0000 0.0000 0.0000 0.0000
9 0.0000 0.0000 0.0000 0.0000 0.0000

10 48.7532 48.7533 48.7532 48.7532 0.0000

TABLE XV
RESULTS FOR 20D (SHIFT AND ROTATION).

Func. Best Worst Median Mean Std
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0625 3.4531 0.2498 0.6489 0.8674
3 20.3872 21.2252 20.3872 20.4962 0.1876
4 0.5500 1.3001 0.8576 0.8824 0.1805
5 4.6668 222.6899 46.2997 71.3088 66.1034
6 0.1123 0.5697 0.3187 0.3063 0.1226
7 0.2951 128.0604 17.2467 28.0297 34.9147
8 53.9198 100.0000 100.0000 98.4640 8.4131
9 100.0000 418.7540 408.0673 310.5969 137.9921

10 399.0652 410.1458 399.2991 400.8697 3.7321

and the error values achieved after the maximum number of
function evaluations maxFEs are collected and analyzed. The
best, worst, mean, median, and standard deviation values of
the function error values for the 8 configurations and 30 runs
are presented in the next sub-section.

B. Experimental Results

The obtained results in the experiments of the proposed j21
algorithm are shown in Tables III–XVIII. There are 16 tables,
one for each dimension and each configuration (there are 8
configurations for dimension D = 10, and 8 configurations
for D = 20).

A comparison based on the mean values on D = 20 (shift,
rotation, and translation) of the original DE, j2020 and the
proposed j21 algorithms is shown in Table XX. The best-
obtained results for each function in this configuration of the
compared algorithms are shown in bold. The original DE used
the following parameter settings: F = 0.5, CR = 0.9, and
NP= 100 for all functions, configurations and dimensions.
The parameter settings for j2020 are as described in [13].
One can notice a similar performance of all algorithms on
function F1. The proposed j21 algorithm obtained the best
results on functions F2–F4, F6, F9, and F10, while the original
DE algorithm obtained the best results on functions F5 and F7.

Since the compiler on our system has made a simplification
during the optimization phase of compilation:

x=x+x; x=x/2; x=x*x; x=sqrt(x);
x=log(x); x=exp(x); y=x/x;

which prevents us to compute T0 (it was zero), we slightly
change the code:

x=x+x+0.0001; x=x/2; x=x*x+0.0001; x=sqrt(x);

TABLE XVI
RESULTS FOR 20D (SHIFT AND TRANSLATION).

Func. Best Worst Median Mean Std
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.0000 20.1617 20.1617 19.4897 3.6810
4 0.0000 0.4921 0.3371 0.3206 0.1284
5 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.0063 0.2948 0.0605 0.0856 0.0799
7 0.0005 0.2215 0.0265 0.0359 0.0444
8 0.0000 100.0000 100.0000 93.3333 25.3708
9 100.0000 300.0000 300.0000 286.6667 50.7416
10 400.0000 400.0000 400.0000 400.0000 0.0000

TABLE XVII
RESULTS FOR 20D (ROTATION AND TRANSLATION).

Func. Best Worst Median Mean Std
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0937 5.4656 0.2186 0.8036 1.1450
3 0.0000 20.8820 20.3872 12.3441 10.0974
4 0.6518 1.1877 0.9031 0.9065 0.1339
5 1.3706 136.6971 15.3632 28.4372 35.9749
6 0.1671 3.5121 0.5380 0.7522 0.6064
7 0.1522 63.0947 9.0615 14.9399 16.3903
8 65.6498 125.1987 93.5111 95.3102 16.2681
9 0.0000 0.0000 0.0000 0.0000 0.0000

10 62.5630 63.2270 62.8147 62.8543 0.1973

x=log(x)+0.0001; x=exp(x); y=(x+0.0001)/x;

to compute/measure T0. The measured execution times are
shown in Table XIX.

In our experimental work we used PC with the next configu-
ration: System: GNU Linux, CPU: Intel(R) Core(TM) i7-4770
CPU 3.4 GHz, Main memory: 16 GB, Programming language:
C++, Algorithm: j21, Compiler: g++.

V. CONCLUSIONS

In this paper, we presented a new differential evolution
algorithm for solving single-objective real-parameter bound-
constrained optimization problems. The proposed algorithm
uses several mechanisms to tackle optimization problems
efficiently: two populations with different sizes, restart mech-
anism in both populations, self-adaptive control parameters
F and CR, the extended range of values for CR in the
bigger population, migration of the best individual from the
big population into the small population, modified mutation
strategy in the bigger population, crowding mechanism and
population size reduction in the bigger population.

Ten benchmark functions with eight different configurations
for dimensions D = 10 and D = 20 have been used in exper-
imental work. The obtained results of the proposed algorithm
j21 are collected in tables as required by the organizers of the
CEC 2021 competition.

Additionally, we compared the results of our j21 algorithm
with the original DE and j2020 algorithms on problems with
dimension D = 20 on one selected configuration (shift,
rotation, and translation). The proposed j21 algorithm shows
better overall performance.



TABLE XVIII
RESULTS FOR 20D (SHIFT, ROTATION AND TRANSLATION).

Func. Best Worst Median Mean Std
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0625 3.4531 0.2498 0.6489 0.8674
3 20.3872 21.3585 20.3872 20.5172 0.2438
4 0.5500 1.3001 0.8576 0.8824 0.1805
5 4.6668 222.6899 42.6402 67.4726 66.1401
6 0.0729 0.5697 0.2820 0.3065 0.1394
7 0.2951 128.0604 17.2467 28.0297 34.9147
8 36.1164 100.0000 100.0000 96.0504 15.0801
9 100.0000 423.3446 412.2307 330.1160 133.5977
10 399.0080 410.1154 399.1706 400.4787 3.3160

TABLE XIX
COMPUTATION COMPLEXITY.
T0 T1 T2 (T2 - T1)/T0

D =10 1e-06 0.01297 0.3551 3.421e+05
D =20 1e-06 0.02457 0.7864 7.618e+05
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[28] J. Brest and M. S. Maučec, “Population Size Reduction for the Dif-
ferential Evolution Algorithm,” Applied Intelligence, vol. 29, no. 3, pp.
228–247, 2008.

[29] M. Lozano, D. Molina, and F. Herrera, “Editorial scalability of evolu-
tionary algorithms and other metaheuristics for large-scale continuous
optimization problems,” Soft Computing - A Fusion of Foundations,
Methodologies and Applications, vol. 15, no. 11, pp. 2085–2087, 2011.

[30] F. Neri and V. Tirronen, “Recent advances in differential evolution: a
survey and experimental analysis,” Artificial Intelligence Review, vol. 33,
no. 1–2, pp. 61–106, 2010.


