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Abstract. In this paper we examined how the population size affects
the performance of the differential evolution algorithm. First, we tested
the original differential evolution algorithm, and then the improved self-
adaptive differential evolution algorithm, on ten benchmark functions,
that have been proposed for the CEC 2019 competition. We used six
different population sizes. Afterwards, we tested the newly created algo-
rithm with population reinitialization. The results show that the popula-
tion size affects the algorithm’s efficiency, and that we need to tune it to
obtain the best results. In the paper, we demonstrate that the newly cre-
ated algorithm with reinitialization gives better, or at least comparable,
results than the two algorithms without reinitialization.

Keywords: Global optimum · Differential evolution · Reinitialization ·
Population size.

1 Introduction

Evolutionary computing is a research area inspired by natural evolution [3]. The
main feature of natural evolution is the survival of the fittest. In evolutionary
algorithms, the initial population is generated randomly and the fitness of every
individual is calculated. The best ones survive and reproduce, and so evolution
progresses [3]. Because of simplicity, in evolutionary algorithms, the population
size NP is constant, but we are aware that this is not the case in nature. In-
stead, the number of individuals in a population varies in different generations.
Adaptive population size is still a challenging task, and, for now, we wanted to
see how the population size affects the algorithms.

We briefly discus the related work in Section 2. The original differential evolu-
tion algorithm and its improved self-adaptive version are described in Section 3.
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2 A. Alić et al.

A new algorithm is proposed in Section 4. Section 5 presents our experiments
and results. In Section 6 we conclude our work briefly.

2 Related work

In the paper [6], the authors investigated how different population sizes affect
the differential evolution algorithm. The paper considered the effect of the pop-
ulation sizes 2D, 4D, 6D, 8D and 10D (D - dimension of the problem) with two
different mutation strategies on problems chosen from the CEC 2005 Special Ses-
sion on Real-Parameter Optimization. They found that a smaller population size
with a greedy strategy converges fast but premature convergence and stagnation
are more pronounced. A large population, with a strategy having good explo-
ration capacity, does not prematurely converge or stagnate but it can converge
very slow.

The same authors in another paper [5] have proposed a differential evolution
algorithm with an ensemble of parallel populations having different population
sizes, in which a more suitable population size takes most of the function evalu-
ations adaptively. Although this paper uses multiple populations, it is related to
our work in the manner that it explores how the population size affects the con-
vergence. They found that the multi-population differential evolution algorithm
was more efficient in obtaining better quality solutions than the conventional
differential evolution algorithm.

A review article on the study of how the population size affects differential
evolution [9] emphasizes that the inappropriate choice of the population size may
seriously impede the performance of each differential evolution algorithm.

All those papers are considering the adaptation of population size in the
conventional differential evolution algorithm, with other parameters (crossover
and mutation rates) kept constant. Besides that, we are investigating the effect
of changing population size along with adapting other parameters.

3 Background

3.1 Differential Evolution (DE)

In the DE algorithm [12, 11, 2, 4, 8, 7], population or candidate solutions are rep-
resented by real-valued vectors with D components (genes) [3]

x
(G)
i = x

(G)
i,1 , x

(G)
i,2 , ..., xi,D

(G)
, (1)

where i = 1, ...,NP and NP is the population size. G represents a generation. The
offspring are created through the mutation and crossover. The initial population
is generated randomly between lower and upper bounds, which are defined by
the problem. An evolutionary cycle starts with random selection of 3 vectors
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xr1,xr2,xr3 from the initial population. A mutation vector is then obtained by
adding a perturbation vector to the first of those random vectors

v
(G+1)
i = x

(G)
r1 + p(G). (2)

The perturbation vector p is the difference between two other randomly
selected vectors multiplied by the scaling factor F

p(G) = F (x
(G)
r2 − x

(G)
r3 ). (3)

The scaling factor is a positive number, and has values F ∈ [0,∞]. In most
cases, the scaling factor occupies values between F ∈ [0, 2]. The second step in
the reproduction is usually a binomial crossover, which has one parameter, the
crossover probability CR ∈ [0, 1]. It creates a trial vector, combining elements of
the mutation vector and the corresponding parent vector as

u
(G+1)
i,j =

{
v
(G+1)
i,j , if rand(0, 1) ≤ CR or j == jrand,

x
(G)
i,j , otherwise.

(4)

CR determines the probability that the trial vector takes a component from
the mutation vector, and jrand is a randomly chosen integer in the range 1, ..., D
which provides that at least one component of the trial vector is changed in
regard to the previous generation. A selection of the offspring that will proceed
to reproduction in next generation comes at the end of the evolutionary cycle.
The fitness value of the trial vector is compared to the fitness value of the
previous population member, the parent vector. The fittest member is allowed
to be reproduced further
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i ),

x
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(5)

3.2 Self-Adaptive Differential Evolution (jDE)

DE has three parameters, namely F , CR, and NP , and their tuning can improve
the performance of the algorithm greatly. In the original DE these parameters are
specified before the evolutionary cycle, and remain fixed during each generation
of the algorithm. That is in contrast with the dynamic nature of evolutionary
computing itself. Furthermore, different values of parameters can be optimal at
different stages of the evolutionary process. A better approach is to use self-
adapting parameters. In an improved algorithm, that the authors named jDE
[1], all population members are extended by the control parameters F and CR.
Adaptive changes of the control parameters should give better individuals, in the
sense that they will have better fitness values. In jDE new control parameters
are calculated as

F
(G+1)
i =

{
Fl + rand1 ∗ Fu, if rand2 < τ1

F
(G)
i , otherwise

(6)



4 A. Alić et al.

Algorithm 1: Self-Adaptive Differential evolution with Restarts

Input: NP , Fl , Fu , τ1, τ2, α, ε
Output: Best found solution

1 Initialization;
2 while not stopping criteria met do
3 count ← 0;
4 for i← 1 to NP do
5 Use Eq. (6) for obtaining new value of Fi ;
6 Use Eq. (7) for obtaining new value of CRi ;
7 Use Eq. (2) for creating new mutant vector vi, where F = Fi and

CR = CRi ;
8 for j ← 1 to D do
9 Use Eq. (4) for crossing over component j;

10 end

11 Use Eq. (5) for selection between individual x
(G)
i and x

(G+1)
i ;

12 if f(xb) < f(x
(G+1)
i ) then

13 xb ← x
(G+1)
i ;

14 end

15 if |f(x
(G+1)
i )− f(xb)| < ε then

16 count ← count + 1;
17 end
18 end
19 if count ≥ NP · α then
20 Population reinitialization;
21 end
22 end
23 return xb;

and

CR
(G+1)
i =

{
rand3, if rand4 < τ2

CR
(G)
i , otherwise.

(7)

Here, τ1 and τ2 represent small probabilities when control parameters should
be changed, and randj , j = (1, 2, 3, 4) are uniform random numbers in the range
[0, 1]. Fi,G+1 and CRi,G+1 are computed before the mutation, so they have an
impact on mutation, crossover and selection operations when making offspring.

4 Self-Adaptive Differential Evolution with Restarts
(rjDE)

Our main work is based on the newly created algorithm, called rjDE, that is
presented in Alg. 1. The algorithm is designed for tackling CEC 2019 problems
proposed in the technical report [10] for the 100-Digit challenge. The proposed
rjDE algorithm is derived from the jDE algorithm, so it uses the same technique
for control parameters adaptation over each evolutionary step.

The jDE algorithm can have the same problem as the DE algorithm. Both
algorithms have fast convergence, and can be trapped into local optima. When
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Table 1. Fifty runs of DE for each function sorted by the number of correct digits.

Function
Number of correct digits

Score
0 1 2 3 4 5 6 7 8 9 10

F1 0 0 0 0 0 0 0 0 0 0 50 10
F2 0 0 0 0 0 0 0 0 0 0 50 10
F3 4 42 0 1 0 0 0 0 0 0 3 2.16
F4 48 2 0 0 0 0 0 0 0 0 0 0.08
F5 0 0 35 9 0 0 0 0 0 0 6 4.28
F6 1 34 0 0 0 0 0 0 0 0 15 6.4
F7 49 1 0 0 0 0 0 0 0 0 0 0.04
F8 35 15 0 0 0 0 0 0 0 0 0 0.6
F9 0 18 32 0 0 0 0 0 0 0 0 2
F10 50 0 0 0 0 0 0 0 0 0 0 0

Total: 35.56

the basic DE converges to some local optima, its population diversity is de-
creased. In order to avoid that, we added Line 15 to Alg. 1 that checks if the i-th
individual fitness value is close to that of the best individual. If this condition
is true, we increase the counter. When some individuals obtained similar fitness
values as the best one, we can assume that population diversity is also decreased.
Therefore, a reinitialization of the population takes place. A restart in rjDE , i.e.
population reinitialization, occurs when the fitness values of α · NP individuals
differ from the best fitness value by less than a very small value ε.

5 Experiments and Results

We experimented on CEC benchmark functions [10] and followed their rules for
computing scores. In [10] there is no limit on the maximum number of function
evaluations (MaxFEs), but in this work we set MaxFEs = 107.

We analyzed three different algorithms: DE, jDE, and rjDE on population
sizes NP = 50, 100, 200, 400, 800, 1600.

We show results for population size 100 first, and, later, compare results for
all population sizes, on all 10 functions, including all 3 algorithms.

5.1 Results for NP = 100

Table 1 shows the results for all benchmark functions using the original DE
algorithm. Other parameters that we used in this algorithm are F = 0.5 and
CR = 0.9. It can be seen that DE obtained 10 correct digits for functions F1
and F2, while for function F10 it obtained no correct digits. Functions F4, F7
and F8 also have scores almost equal to zero, from which we can see that the
original DE algorithm is not suitable for solving those functions when using a
population with size 100.

The jDE algorithm solved functions F1, F2 and F4 to 10 correct digits. For
all other functions, scores were bigger than one correct digit. Those results are
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Table 2. Fifty runs of jDE for each function sorted by the number of correct digits.

Function
Number of correct digits

Score
0 1 2 3 4 5 6 7 8 9 10

F1 0 0 0 0 0 0 0 0 0 0 50 10
F2 0 0 0 0 0 0 0 0 0 1 49 10
F3 0 39 0 0 0 0 0 0 0 0 11 4.96
F4 2 2 0 0 0 0 0 0 0 0 46 10
F5 0 17 12 0 0 0 0 0 0 0 21 8.88
F6 0 31 0 0 0 0 0 0 0 0 19 7.84
F7 13 31 6 0 0 0 0 0 0 0 0 1.24
F8 0 47 3 0 0 0 0 0 0 0 0 1.12
F9 0 0 49 1 0 0 0 0 0 0 0 2.04
F10 36 0 0 0 0 0 0 0 0 0 14 5.6

Total: 61.68

Table 3. Fifty runs of rjDE for each function sorted by the number of correct digits.

Function
Number of correct digits

Score
0 1 2 3 4 5 6 7 8 9 10

F1 0 0 0 0 0 0 0 0 0 0 50 10
F2 0 0 0 0 0 0 0 0 0 0 50 10
F3 0 0 2 24 19 0 0 1 0 0 4 5.04
F4 0 0 0 0 0 0 0 0 0 0 50 10
F5 0 0 0 0 0 0 0 0 0 0 50 10
F6 0 0 0 0 0 0 0 0 0 0 50 10
F7 2 3 1 0 0 0 0 0 0 0 44 10
F8 0 48 2 0 0 0 0 0 0 0 0 1.08
F9 0 0 50 0 0 0 0 0 0 0 0 2
F10 0 0 0 0 0 0 0 0 0 0 50 10

Total: 78.12

shown in Table 2. Parameters used in this algorithm are Fl = 0.1, Fu = 0.9,
τ1 = τ2 = 0.1. Initial control parameters were F = 0.5 and CR = 0.9. It is
obvious that jDE is better for solving single objective optimization problems
than the simple DE.

Table 3 shows the score for each function for the rjDE algorithm. The highest
score 10 was obtained for 7 out of 10 functions. Parameters used here were the
same as for the jDE algorithm, along with two additional parameters, ε = 10−16

and α = 0.5. Functions F3, F8, and F9 seem to be the difficult ones for rjDE.
Total scores for DE, jDE and rjDE are 35.56, 61.68 and 78.12, respectively.

5.2 Results for Different Population Sizes

In Table 4 we present the performance of the DE algorithm on all 10 benchmark
functions and all 6 population sizes. It is obvious that performance of DE is
not increasing nor decreasing continuously when the population size increases,
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Table 4. Scores for each function and each population size using DE.

Function
Population size

50 100 200 400 800 1600

F1 10 10 10 10 10 10
F2 2.04 10 10 10 10 6
F3 3.52 2.16 1 1.08 1.28 1.52
F4 0.08 0.08 0.52 2.08 0 0
F5 3.16 4.28 3.36 6.04 2.44 1
F6 5.32 6.4 6.76 7.48 10 10
F7 0 0.04 0 0 0.12 0.44
F8 0.2 0.6 1.04 1.2 0.28 0
F9 1.76 2 2 2 2 2
F10 0 0 0.4 2.8 1.56 0

Total 36.08 35.56 35.08 42.68 37.68 30.96

but we can observe that it has by far the best score for NP = 400. Observing
all particular functions, it can be seen that the best performance was for the
function F1, namely 10 correct digits were obtained for every population size.
For the function F2, DE obtained 10 correct digits for population sizes NP =
100, 200, 400, 800. Too small and too big population sizes obviously have a bad
impact on this function, but too small an NP is still worse than too big. For
function F6, the DE algorithm reached 10 correct digits for NP = 800, 1600,
and all other scores were bigger than 5. Functions F3, F5 and F9 all have scores
equal to or greater than 1, while for the remaining functions, zero correct digits
were obtained 2 or 3 times. The best total score, equal to 42.68, was obtained
for NP = 400.

Performance of the jDE algorithm is shown in Table 5. It is obvious that
this algorithm has better performance than the previous one. The best score (10
correct digits) was obtained 17 times out of 60 possibilities. For function F1 jDE
obtained 10 correct digits for every population size, for F2 and F5 4 times and
for F4 3 times. Zero correct digits were obtained only 4 times. The algorithm
performed worst on function F7. The best total score, 66.48, was obtained again
for population size 400.

Table 6 presents results for the rjDE algorithm. This algorithm reached 10
correct digits 37 times out of 70, which is 52.85% of overall performance. The
worst result, zero correct digits, was reached only once, for function F10 and
population size 1600. The best total score, 78.6, was obtained for population
size of 50.

It is obvious that the population size affects the performance of all differen-
tial evolution algorithms. For the jDE and rjDE it seems that the total score
increases when we increase the population size until it reaches the maximum
for some NP , and then decreases for bigger population sizes. For the DE algo-
rithm, we can notice a small deviation from that observation. The maximum for
different algorithms is obtained for different population sizes: For DE the best
population size is 400, followed by 800, for jDE the best population sizes are
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Table 5. Scores for each function and each population size using jDE.

Function
Population size

50 100 200 400 800 1600

F1 10 10 10 10 10 10
F2 1.92 10 10 10 10 10
F3 2.08 4.96 6.4 7.72 10 0.2
F4 6.76 10 10 10 1.44 0.08
F5 6.92 8.88 10 10 10 10
F6 8.92 7.84 7.12 8.56 9.28 10
F7 0.8 1.24 1.88 0 0 0
F8 1.12 1.12 1 1 0.96 0.2
F9 2.04 2.04 2 2 2 2
F10 5.6 5.6 8 7.2 2.76 0

Total 46.16 61.68 66.40 66.48 56.44 42.48

Table 6. Scores for each function and each population size using rjDE.

Function
Population size

25 50 100 200 400 800 1600

F1 10 10 10 10 10 10 10
F2 0.04 5.08 10 10 10 10 9.36
F3 10 10 5.04 3 2.48 2 1.2
F4 10 10 10 10 10 4.88 2.2
F5 10 10 10 10 10 10 5.96
F6 10 10 10 10 10 10 10
F7 5.88 10 10 8.6 1 0.64 0.04
F8 1.2 1.52 1.08 1 1 1 1
F9 2 2 2 2 2 2 2
F10 10 10 10 10 10 4.16 0

Total 69.12 78.6 78.12 74.6 66.48 54.68 41.76

400, 200, and for rjDE 50 and 100. Obviously, some algorithms perform better
on bigger populations, while the others give better results for smaller population
sizes. We followed the rules that were suggested for the CEC 2019 competition.

6 Conclusion

We analyzed three algorithms: DE, jDE and rjDE on the CEC 2019 benchmark
functions with different population sizes, in order to see how the population size
affects their performance. We followed the rules of the CEC 2019 competition.
Our analysis shows that the population size affects the performance of those
algorithms in the manner that it increases the total score until it reaches max-
imum. Further increment of the population size decreases the total score. The
self-adaptive differential evolution with reinitialization has proven to have the
best results when performing on selected benchmark functions. For the future
work, we plan to run the algorithms with a greater maximum number of func-
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tion evaluations. We also plan to investigate linear population reduction methods
such as L-SHADE [13].
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